Sub-1V (0.6V) 8bit Flash MCU DC-DC Converter, E²PROM

Description

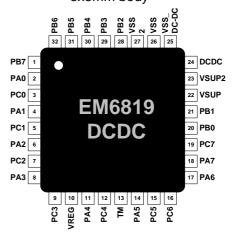
The EM6819 is designed to be battery operated for extended lifetime applications. Its large voltage range from 3.6V down to 0.9V makes it a perfect match for today's demanding applications. Brownout and powercheck functions ensure reliable operation at or near undervoltage conditions, offering greater reliability in complex operation modes. Each of the 24 I/Os are freely programmable and the microcontroller has a dual quartz and trimmable RC oscillator up to 15MHz. It has an 8-bit RISC architecture specially designed for very low power consumption. With 2 clocks per instruction, the EM6819 executes up to 7.5 MIPS at 15MHz and achieves astonishing 4000 MIPS/Watt.

Features

- □ Wide supply voltage range 0.9 V 3.6 V
- Runs down to 0.6V with enabled DCDC and still 10mA load current
- ☐ True low current: typ 140uA at 3V, 1 MIPS
- ☐ Up to 7.5 MIPS at 15MHz
- DC-DC converter using just external coil and capacitor
- On-chip brownout detection
- PowerCheck functions at start-up
- □ 32 Voltage Level Detection on Supply or Input pin
- □ 3 terminal Operational Amplifier / Comparator
- □ ADC 10-bit, 8 channel
- Temperature sensor
- Voltage reference input/output
- □ Fast wake-up
- Up to 24 fully configurable I/Os
- ☐ Flash read monitoring system
- lowest voltages
- Dual clock mode, quartz and RC oscillators:
 - o 2 MHz 15MHz RC, pre-trimmed
 - o Low freq RC Oscillator (8kHz)
 - o 32768 Hz Xtal, 4MHz Resonator/Xtal, Ext Clock
- 8-bit CoolRISC architecture
 - o 16 registers
 - o 8*8bit hardware multiplier
- Power-On-Reset and watchdog
- □ GPNVM Memory
 - o Sharing Instruction code and data
- ☐ Fully static 512 Byte RAM
- Internal and external interrupts
- □ Frequency generator
- 4 independent PWM outputs
- 8/16-bit timers
- Prescaler for RC and XTAL
- SPI interface
- Small size, Green mold / lead-free packages

Tools & Services

- On chip debug system in the application
- □ ISP (In-system) programming
- C-compiler
- ☐ Windows-based software programs
- □ Programmer from different vendors
- Dedicated team of engineers for outstanding support


Architecture

Pinout (sample)

Others include SO8, TSSOP16/20/28, QFN20/32

32 Lead QFN 5x5mm body

Typical Applications

- Metering
- Safety and Security devices
- □ Heat Cost Allocation
- □ Sensor Interfaces, Smoke detector
- □ Security
- Body care
- □ Sports
- Computer peripherals, Bluetooth chipset
- □ Wireless

Power supply

- Low power architecture
- Voltage regulator for internal logic supply
- External regulator capacitor
- Voltage mult: gives internal multiplied voltage to allow 0.9V start-up (Padring remains on VSUP)
- DC-DC Upconverter: with ext Coil and Cap. Increases the VSUP for the whole circuit I.e to 3V. Running down to 0.6V input voltage.

CPU

- 8-bit CoolRisc 816L Core
- 16 internal registers
- 4 hardware subroutine stacks
- 8-bit hardware multiplier

Flash/EEPROM

- 16.9k Byte shared Genaral Purpose Non Volatile Flash memory
- max 6k Instructions program memory
- max 12 kByte non volatile data memory

RAM

- 512 x 8-bit static SRAM
- 48 byte of Ram-cache for EEProm modification support

Operating modes

- Active mode: CPU and peripherals are running
- Standby mode: CPU halted, peripherals on
- Sleep mode: no clocks, data retained
- Power-Down mode, Reset state
- Wake Up Event from PortA inputs

Resets

- Power On Reset
- Reset from logic watchdog
- Brown out (as voltage supervisory function)
- Reset with Port A selection
- Flags to identify the reset source

Watchdog timer

- generation of watchdog reset after time out
- independent low frequency watchdog oscillator

Oscillator RC

- internal RC oscillator, 2MHz and 15MHz pre-trimmed
- internal 8 KHz RC Oscillator

External Oscillator

32 KHz watch type Crystal or 4MHz Resonator/XTAL

Prescaler's

- Two clock prescalers (dividers) for the peripheral clock generation:
 - Prescaler 1 is a 15-stage divider
 - Prescaler 2 is a 10-stage divider
- input clock software selectable
- fix intervall IRQ's

Interrupt

- external IRQ's from Port A, VLD, Comparator
- internal IRQ's from Timer, Prescaler, ADC, SPI
- Event from SPI/ADC and DoC

VLD

- Detection of 32 voltage levels, internal reference
- Comparison against VSUP, input Pin or Op.Amp output

Parallel In/Output Port A, Port C

- 8-bit wide direct input read
- all functions bit-wise configurable
 - Input, output
 - Debouncer, IRQ on pos. or neg. edge
 - Input combination reset
 - Pullup, pulldown or nopull selectable
 - Freq. Input for timer
 - Analog In/Out

Parallel In/Output Port B

- 8 multipurpose I/O's
- 8-bit wide direct input read
- CMOS or Nch. Open Drain outputs
- all functions bit-wise configurable
 - Input, output
 - Pullup, pulldown or nopull selectable
 - CMOS or Nch. Open Drain outputs

Serial Port Interface SPI

- 3 wire serial Interface, Sclk, Sin, Sout
- master and Slave mode
- Serial datastream output
- Event / IRQ
- Maped on port outputs

Timer (4 x 8-bit, or 2 x 16-bit)

- 8 (16) bit wide, Zero Stop and Auto Reload mode
- External signal pulse width measurement
- PWM generation, IRQ
- Event Counter
- Input capture
- Output compare

Sleep Counter Wake-up (SCWUP)

- Automatically wakes up the circuit from sleep mode
- Enable/disable by register

Op. Amplifier / Comparator

- All 3 terminals mapped on PortA/PortC
- Output routed to VLD cell
- Amplifier or Comparator output

Temp. Sensor

- Fully internal temperature sensor
- Multiplexed input to ADC

Brown Out

- On-chip Brown-Out detection, reset state
- Power check at Startup

ADC

- 10-bit, 8 channels ADC
- Single or Continuous mode
- External/internal reference voltage available on a pad
- Event / IRQ

DoC (Debug on Chip)

- 2 wire serial interface debug and programming interface
- Flash programming
- Event / IRQ

Pin Name	Software selectable functions	Remarks
PA0	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, timer1 ext clock. Output of CPU write and a selection of internal clock and PWM signals. Analog input for ADC.	
PA1	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, timer2 ext clock. Output of CPU write, selection of internal clock and PWM signals. Analog: input for ADC and VLD; Output for OPAMP.	
PA2	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, serial data input, timer3 ext clock. Output of CPU write, serial data out and selection of internal clock and PWM signals Analog: input for ADC, VLD and Opamp;	
PA3	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, serial data input, timer4 ext clock. Output of CPU write, serial data out and selection of internal clock and PWM signals Analog: input for ADC,VLD and Opamp;	
PA4	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, serial data. Output of CPU write and a selection of internal clock and PWM signals. Analog: XTAL/Resonator connection.	
PA5	Input with pullup/pulldown, IRQ capability, CPU read, wake-up. Output of CPU write and a selection of internal clock and PWM signals.	
PA6	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, serial clock Output of CPU write, serial clock and a selection of internal clock and PWM signals. Analog: input for VLD; Output for VBGP	
PA7	Input with pullup/pulldown, IRQ capability, CPU read, wake-up, serial clock Output of CPU write, serial data and a selection of internal clock and PWM signals. Analog: input for VLD; Output for internal reference voltage	
PB0	Input with pullup/pulldown, CPU read, serial data. Output of CPU write and a selection of internal clock and PWM signals.	
PB1	Input with pullup/pulldown, CPU read. Output of CPU write and a selection of internal clock and PWM signals.	
PB2	Input with pullup/pulldown, CPU read, serial clock. Output of CPU write, serial clock and a selection of internal clock and PWM signals.	
PB3	Input with pullup/pulldown, CPU read. Output of CPU write and a selection of internal clock and PWM signals.	
PB4	Input with pullup/pulldown, CPU read. Output of CPU write, serial data and a selection of internal clock and PWM signals.	
PB5	Input with pullup/pulldown, CPU read. Output of CPU write and a selection of internal clock and PWM signals.	
PB6	Input with pullup/pulldown, CPU read. Output of CPU write and a selection of internal clock and PWM signals.	GASP clock
PB7	Input with pullup/pulldown, CPU read. Output of CPU write and a selection of internal clock and PWM signals.	GASP data
PC0	Input with pullup/pulldown, IRQ capability, CPU read, timer1 ext clock. Output of CPU write and a selection of internal clock and PWM signals. Analog input for ADC.	

DC4	Input with pullup/pulldown IBO copphility CDU road timer? out clock	
PC1	Input with pullup/pulldown, IRQ capability, CPU read, timer2 ext clock. Output of CPU write, selection of internal clock and PWM signals.	
	Analog: input for ADC and VLD; Output for OPAMP.	
PC2	Input with pullup/pulldown, IRQ capability, CPU read.	
	Output of CPU write, serial data, selection of internal clock and PWM signals . Analog: input for ADC and OPAMP.	
PC3	Input with pullup/pulldown, IRQ capability, CPU read, timer4 ext clock.	
	Output of CPU write, selection of internal clock and PWM signals . Analog: input for ADC and OPAMP.	
PC4	Input with pullup/pulldown, IRQ capability, CPU read, external clock input	
	Output of CPU write, selection of internal clock and PWM signals . Analog: XTAL/Resonator connection	
PC5	Input with pullup/pulldown, IRQ capability, CPU read.	
	Output of CPU write, selection of internal clock and PWM signals . Analog: input for VLD.	
PC6	Input with pullup/pulldown, IRQ capability, CPU read, serial clock, timer1 ext clock	
	Output of CPU write, serial clock, selection of internal clock and PWM signals . Analog: input for VLD.	
PC7	Input with pullup/pulldown, IRQ capability, CPU read, timer3 ext clock	
	Output of CPU write, selection of internal clock and PWM signals .	
TM	GASP mode entry	GASP mode
VREG	External Capacitance to maintain internal regulated voltage	
DC-DC	Coil connection in in case of DC-DC converter	
VSUP	Main power supply pin. Connect to positive terminal of the DC-DC charge holder capacitance	
VSUP2	Supply filtering pin in case of DC-DC converter	Only on DC-
	Connect to positive terminal of the DC-DC charge holder capacitance Connect to VSUP if DC-DC not used	DC Versions
VSS	Main GND. This is also the circuit substrate potential.	
	Connect to negative terminal of the DC-DC charge holder capacitance	
VSS2	Ground noise filtering in case of DCDC converter used Connect to negative terminal of the DC-DC charge holder capacitance	Only on DC- DC versions
	Connect to VSS if DC-DC not used	
VSS_	DCDC ground connection	Only on DC-
DC-DC	Connect to negative terminal of the DC-DC charge holder capacitance Connect to VSS if DC-DC not used	DC versions

TABLE OF CONTENTS

1.	EM6819 FAMILY	11
2.	SYSTEM OVERVIEW	12
:	2.1 Operating Modes	13
	2.1.1 Active mode	13
-	2.2 Low Power Modes	13
	2.2.1 Standby mode	13
	2.2.2 Sleep mode	14
	2.2.3 Sleep Wake-up 2.2.4 Power-down mode	14 15
	2.2.5 Operation mode registers	16
	2.3 REGISTER TYPES	17
	2.4 POWER MANAGEMENT	18
	2.4.1 Brownout	18
	2.4.2 Powercheck	18
	2.4.3 POR	18
	2.4.4 Powermanagment Registers	19
	2.5 REGISTER MAP	20
	2.6 PORT TERMINAL CONNECTION REFERENCE TABLE	28
	2.7 TSSOP PACKAGE PINOUT CIRCUIT WITHOUT DC-DC AND S08	29
	2.8 TSSOP PACKAGE PINOUT CIRCUIT WITH DC-DC	30
	2.9 QFN PACKAGES WITH AND WITHOUT DCDC	31
3.	CPU CORE CR816	32
_	3.1 PM_MISS FUNCTION (FLASH READ MONITOR)	32
4.	NVM MEMORY	33
	4.1 Introduction	33
	4.2 NVM ARCHITECTURE	33
	4.3 RAM CACHE	34
•	4.4 WRITE DATA IN NVM	34
	4.4.1 Row and sector selection 4.4.2 Fast/slow operation	34 34
	4.4.3 Erase	35
	4.4.4 Write	35
	4.5 Row 61 Sector 5	36
	4.6 Row 62 Sector 5	36
	4.6.1 Temperature tolerance	36
	4.7 Row 63 Sector 5	37
	4.8 READ DATA IN NVM	38
•	4.9 Row to cache	38
	4.9.1 NVM configuration registers	39
5.	CRC CHECK	40
	5.1 CRC CHECK ON PROGRAM AREA	40
,	5.2 CRC CHECK ON DATA AREA	40
6.	ROM API ROUTINES	41
	6.1 BOOT SEQUENCE	41
	5.2 SUB-ROUTINES USED FOR APPLICATION	42
7.		43
8.	RESET CONTROLLER	44
	3.1 RESET SOURCES	44
8	3.2 RESET SIGNALS	44
	8.2.1 POR	44
	8.2.2 PorLog	44
	8.2.3 ResAna 8.2.4 ResSys	44 44
	8.2.4 ResSys 8.2.5 Reset Flags	44 45
	U.Z.O Neset i lays	40

8.3	RESET REGISTERS	45
9. OS	CILLATOR AND CLOCKING STRUCTURE	46
9.1	EXTERNAL CLOCK SELECTION	47
9.2	INTERNAL HIGH AND LOW FREQUENCY CLOCK SELECTION	47
9.2.		48
9.2.		48 49
	3 Prescaler1 Clock selection 4 Prescaler 2 Clock selection	49 49
9.3	CLOCK CONTROL	50
9.4	OSCILLATORS CONTROL	51
9.5	CLOCK CONTROL REGISTERS	53
10. PRI	ESCALER1	55
10.1	Prescaler1 Clock selection	55
	Prescaler1 reset	56
	Prescaler registers	56
11. PRI	ESCALER2	57
11.1	Prescaler2 Clock selection	57
	PRESCALER2 RESET	57
	Prescaler2 registers	57
12. INT	ERRUPT AND EVENT CONTROLLER	58
12.1	INTERRUPTS GENERAL	58
	1.1 Basic features	<i>58</i>
12.2 12.3	INTERRUPT ACQUISITION INTERRUPTS FROM IO PORTS	59 60
12.4	INTERRUPT ACQUISITION MASKING.	60
12.4	4.1 Pre and Postmasking of interrupts	60
	INTERRUPT ACQUISITION CLEARING	61
12.5		61
12.6 12.7	INTERRUPT REGISTERS EVENT GENERAL	61 64
	7.1 Basic features	64 64
12.8	EVENT ACQUISITION	64
12.9	EVENT MASKING	65
	EVENT ACQUISITION CLEARING	66
	SOFTWARE EVENT SETTING	66
	EVENT REGISTERS	66
13. CP	U INTERRUPT AND EVENT HANDLING	67
13.1	INTERRUPT PRIORITY	67
	CPU STATUS REGISTER CPU STATUS REGISTER PIPELINE EXCEPTION	68 68
	PROCESSOR VECTOR TABLE	69
	CONTEXT SAVING	69
14. POI	RT A	70
14.1	PORT A TERMINAL MAPPING	70
	PORT A IO OPERATION	70
	OUTPUT SIGNALS ON PORT A	72
	PORT A DEBOUNCER	73
	PORT A INTERRUPT GENERATION	73
	5.1 PA Irq in Active and Standby mode 5.2 PA Irq in Sleep Mode	73 73
	Port A reset function	73 73
14.7	PORT A WAKE-UP FUNCTION	73
14.8	PORT A REGISTERS	74
15. POI	RTB	76
15.1	PORT B TERMINAL MAPPING	76
15.2	PORT B IO OPERATION	76

15.2.1 Gasp communication on PB7, PB6 15.3 OUTPUT SIGNALS ON PORT B	77 78
15.4 PORT B REGISTERS	79
16. PORT C	80
 16.1 PORT C TERMINAL MAPPING 16.2 PORT C IO OPERATION 16.3 OUTPUT SIGNALS ON PORT C 16.4 PORT C DEBOUNCER 16.5 PORT C INTERRUPT GENERATION 	80 80 82 83 83
16.5.1 PC Irq in Active and Standby mode 16.5.2 PC Irq in Sleep Mode 16.6 Port C registers	83 83 84
17. TIMERS	86
17.1 TIMER CHAINING 17.2 TIMER CLOCK SOURCES 17.3 TIMER START 17.3.1 Software start - Stop 17.3.2 Hardware Start – Stop (period counting) 17.3.3 Hardware Start – Stop (puls counting)	86 87 88 88 88 88
17.4 AUTO-RELOAD MODE 17.5 AUTO-STOP MODE 17.6 TIMER INPUT CAPTURE 17.7 OUTPUT COMPARE 17.8 OUTPUT COMPARE - PWMX SIGNAL PORT MAPPING 17.9 TIMER INTERRUPTS 17.10 TIMER REGISTERS	89 89 90 91 92 93
18. SPI – SERIAL INTERFACE	97
18.1 SCLK - SPI MASTER/ SLAVE MODE AND CLOCK SELECTION 18.2 SIN PORT MAPPING 18.3 SOUT PORT MAPPING 18.4 SPI START – STOP 18.5 AUTO-START 18.6 RTZ POSITIVE EDGE TRANSMISSION 18.7 RTO POSITIVE EDGE TRANSMISSION 18.8 RTZ NEGATIVE EDGE TRANSMISSION 18.9 RTO NEGATIVE EDGE TRANSMISSION 18.10 SPI REGISTERS	98 99 99 99 100 100 100 101
19. WATCHDOG	102
19.1 WATCHDOG CLEAR19.2 WATCHDOG DISABLING19.3 WATCHDOG REGISTERS	102 102 103
20. SLEEP COUNTER WAKE-UP	104
20.1 SC WAKE-UP ENABLING 20.2 SC WAKE-UP DISABLING 20.3 SC WAKE-UP REGISTERS	104 104 105
21. 10-BITS ADC	106
21.1 CONDITIONER 21.1.1 Range selection 21.1.2 Reference selection 21.1.3 Analog input selection 21.2 ADC OFFSET TRIM SELECTION 21.2.1 Running mode 21.2.2 ADC enabling 21.2.3 ADC sampling rate 21.2.4 Low noise mode 21.2.5 8bit ADC selection	106 106 107 108 108 109 109 110 110
Z 1.Z.J ODIL ADO SCIEGION	7.70

	ADC ACQUISITION SEQUENCE ADC REGISTERS	111 111
	MPERATURE SENSOR	112
	_	
22.1	TEMPERATURE SENSOR ENABLING TEMPERATURE SENSOR REGISTERS	112 112
	C/DC CONVERTER	113
	DC/DC ENABLING DC/DC VOLTAGE SELECTION	113 113
	DC/DC LOW NOISE MODE	113
	DC-DC REGISTER	114
24. BA	ND GAP	115
24.1	BAND GAP REGISTER	115
25. VL	D	116
25.1	VLD SOURCE AND LEVEL SELECTION	116
	VLD ENABLE	116
	VLD RESULT	116
	VLD INTERRUPT	117
	VLD TRIMMING VLD REGISTERS	117 117
	COSCILLATOR	118
26.1	RC OSCILLATORS REGISTERS	118
	AL OSCILLATOR 32KHZ	119
	SONATOR 4MHZ	120
29. 8K	HZ OSCILLATOR	121
30. AN	IALOG OPAMP	122
30.1	SELECT OPAMP/COMPARATOR	122
	SUPPLY SELECTION	122
30.3		123
30.4	OPAMP REGISTERS OCKS CONSUMPTION	123
		124
32. TY	PICAL T AND V DEPENDENCIES	125
32.1	IDD CURRENTS	125
32. 32.2	.1.1 General conditions IOL AND IOH DRIVES	125 132
	PULL-UP AND PULL-DOWN	132
	RC OSCILLATOR 15MHz AND 2MHz	137
33. EL	ECTRICAL SPECIFICATION	138
33.1	ABSOLUTE MAXIMUM RATINGS	138
33.2		138
33.3		138
33.4 33.5		138 138
33.6		139
33.7		139
	DC CHARACTERISTICS – VOLTAGE DETECTION LEVELS	141
	DC CHARACTERISTICS – REFERENCE VOLTAGE DC CHARACTERISTICS – DC-DC CONVERTER	141 141
	DC CHARACTERISTICS – DC-DC CONVERTER DC CHARACTERISTICS – OSCILLATORS	141
33.12	2 DC CHARACTERISTICS – VHIGH	143
	B DC CHARACTERISTICS – OPAMP	143
	DC CHARACTERISTICS – ADC DC CHARACTERISTICS – TEMPERATURE SENSOR	143 144
	DC CHARACTERISTICS - TEMPERATURE SENSOR DC CHARACTERISTICS - I/O PINS	144

34. PACKAGE DRAWINGS	145
34.1 DIMENSIONS OF TSSOP28 PACKAGE	145
34.2 DIMENSIONS OF TSSOP24 PACKAGE	146
34.3 DIMENSIONS OF TSSOP20 PACKAGE	147
34.4 DIMENSIONS OF TSSOP16 PACKAGE	148
34.5 DIMENSIONS OF SO8 PACKAGE	149
34.6 DIMENSIONS OF QFN32 PACKAGE	150
34.7 DIMENSIONS OF QFN20 PACKAGE	151
35. PACKAGE MARKING	152
36. ERRATA	153
37. ORDERING INFORMATION	154

Acronyms used in this document

most significant bit **MSB** LSB least significant bit CR / CPU/ CoolRisc 816 CPU core Non Volatile Memory NVM Read Only Memory **ROM** Random Access Memory RAM API **Application Program Interface GASP** General Access Serial Port

SW Software HW Hardware

'1' / H / high Determines HIGH value, logical true '0' / L / low Determines LOW value, logical false

POR Power on reset
PWRC Power check

SCWUP Sleep Counter Wake-up
VLD Voltage Level Detector
(T) Tested in the production
(Q) Validated during qualification
(D) Guaranteed by the design

Nomenclature

Bit order scheme in this document is [n:0] where bit 'n' is the MSB and bit '0' is the LSB, unless otherwise stated. Positive logic is assumed, High ('1') values means asserted or active state and Low ('0') value means not asserted or inactive state, unless otherwise stated.

Register names and register bit names are written in **bold** typeface.

Signal names are written in italic-bold type face.

API subroutines are written in italic

Naming convention

The XTAL frequency is 32.768 kHz but is this document it is written 32 KHz (k=1000, K=1024).

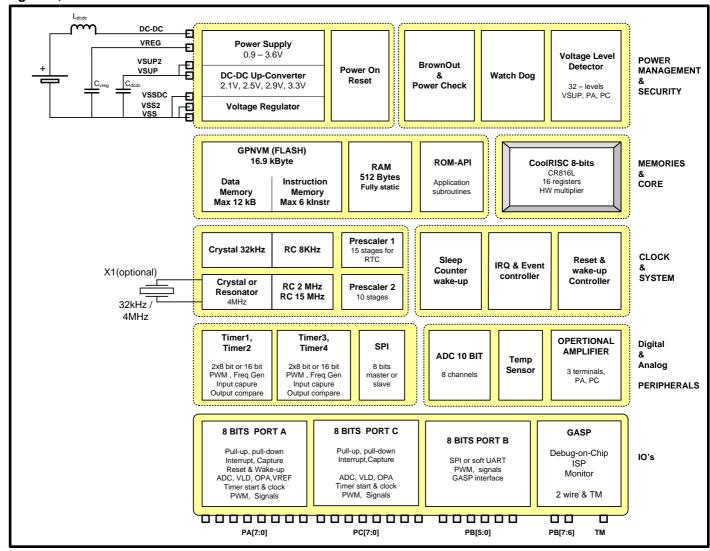
Related Documents

- [1] CoolRISC 816L 8-bit Microprocessor Core, Hardware und Software Reference Manual V1.1 Mai 2002
- [2] ROM API document

EM6819 FAMILY 1.

EM6819 family ensures 0.9V battery operations and much more ...

861 65 6 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SO08 TSSOP16	TSSOP16-20-28 QFN20	TSSOP20-28 QFN20	TSSOP20-28	SO08 TSSOP16	TSSOP16-20 QFN20	TSSOP20-28 QFN20-32	TSSOP16-20-28 QFN20	TSSOP16-20-28 QFN20	TSSOP20-28	SO08 TSSOP16-20-28	TSSOP20-28 QFN20-32	TSSOP16-20-28	TSSOP20-28 QFN20-32	TSSOP20-28	lity
101 all all and a	s ⊢	<u>⊢ 0</u>	<u>⊢ 0</u>	<u>⊢</u>	s –	<u>⊢ 0</u>	<u>⊢ </u>	<u>⊢ 0</u>	<u>⊢ 0</u>	>	⊗ ⊢	<u>⊢ 0</u>		<u>⊢ 0</u>	`	vailabi
BIGID HOS	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	um e a
BIRGI BIOGIBOS	SCWUP	SCWUP	SCWUP	SCWUP WD	SCWUP	SCWUP	SCWUP	SCWUP	SCWUP	SCWUP	SCWUP WD	SCWUP	SCWUP	SCWUP	SCWUP WD	kage & vol
Tealier tool 1990	Ck Brown-Out VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	PwrCk Brown-Out OPAMP VLD	Note 1: Ask for package & volume availability
Source Say to		>	>	>			^	>	>	>	>	>	^	^	>	
10 10 20 100 1 100		8	80	9	4	4	8	8	8	9	8	80	8	8	9	
S. S	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
1100	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
101611380 RI 18118	RC 8kHz 2MHz 15MHz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz	RC 8kHz 2MHz 15MHz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz	RC 8kHz 2MHz 15MHz	RC 8kHz 2MHz 15MHz Crystal 32kHz - 4Mhz				
46111 A6111	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	15MHz	ulation Converter lifier start-up tector imming ake-Up
IOTRAJIANIOS PARIO	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	SPI SW-UART / I2C	Pulse Width Modulation Analog to Digital Converter Operational Amplifier Power Check on start-up Voltage Level Detector In System Programming Sleep Counter Wake-Up
TO LEAL TO SOLO OF THE SOLO OF	04 to 12	12 to 24	12 to 20	16 to 24	04 to 12	08 to 12	12 to 24	12 to 24	12 to 24	16 to 24	04 to 24	12 to 24	12 to 24	12 to 24	16 to 24	PWM ADC OPAMP PwrCk VLD ISP SCWUP
180			>			>	>	'				>		>	'	
Soons of So	0.9 - 3.6	0.9 - 3.6	0.9 - 3.6	1.8 - 5.5	0.9 - 3.6	0.9 - 3.6	0.9 - 3.6	0.9 - 3.6	1.8 - 3.6		0.9 - 3.6	0.9 - 3.6	1.8 - 3.6	1.8 - 3.6	1.8 - 5.5	Non Volatile Memory Random Access Memory General Purpose Input Output Sealla Peripheral Interface Fully, embedded RC Oscillator Oscillator on chip Digital Watch-dog
SOLON WAY	256	512	512	512	256	256	512	512	512	512	512	512	512	512	512	lemory ss Mer se Inp ral Inte ral SC (
Nap Spo. Tell	4	4	4	4	8	8	8	8	80	8	12	12	12	12	8	atile M Acce: Purpo eripher ibedde ir on cl
SO ONDS SOOS LEED A	2	2	7	2	4	4	4	4	4	4	9	ø	9	9	9	Non Volatile Memory Random Access Memory General Purpose Input Our Sorial Peripheral Interface Fully embedded RC Oscillator on chip Digital Watch-dog
® Bart number	EM6819F2-B006	EM6819F2-B000	EM6819F2-A000	EM6819F2-B300	EM6819F4-B005	EM6819F4-A005	EM6819F4-A000	EM6819F4-B000	EM6819F4-B100	EM6819F4-B300	EM6819F6-B004	EM6819F6-A000	EM6819F6-B100	EM6819F6-A100	EM6819F6-B300	NVM RAM GPIO SPI RC Crystal WD
		d Fla: Byte)						now) 13.11					ord F .9kB)			



2. SYSTEM OVERVIEW

The circuit's function blocks can be splitted in 5 different categories:

- Power management and security functions
- Memories and CPU Core
- Clock selection, clock switching and system peripherals
- Digital and Analog internal peripherals
- Communication interfaces via the IO pads

Figure 1, EM6819 overview

Power management and security functions

The power managment block assures a proper system start at power up with Power on reset and power check function. The internal Brownout supervises the CPU and core internal power supply and asserts a reset at undervoltage. The watchdog function monitors the CPU execution, wheras the VLD can be used to monitor internal or external voltages. Its results are available to the user to take actions accordingly. The DC-DC upconverter can be switched on by demand.

Memories and CPU Core

This part contains all user program memory (FLASH), the non volatile data memory (mapped into the FLASH memory), the RAM and the vendor supplied application subroutines (ROM-API) for non volatile memory modifications. An essential part of this block is also the CR816 microprocessor core.

Clock selection, clock switching and system pheripherals

This block takes care of all internal and external clock sources. It synchronizes the clocks where needed and assures that the system can not hang-up due to faulty clock switching (i.e avoids switching to a non-present clock source). This block is also an essential part of the low power architecture by minimizing the total energy consumption by keeping the active clocking nodes to a strict minimum.

Digital and Analog internal peripherals

This part contains all the user peripherals such as timer, SPI, ADC, etc ... These peripherals are user configurable and fully adjustable to the user application.

Communication interfaces via the IO pads

Here are all the external communication channels grouped. All communication goes through at least 1 of the max 24 IO's. Several internal functions such as, serial interface, PWM, freq outputs, etc. are mapped to the IO's.

2.1 OPERATING MODES

The circuit has 4 distinctive operations modes wheras Standby, Sleep and Power-Down mode are specific low power modes

Active CPU running all functions may be used

StandBy CPU in Standby not clocked. Peripheral functions may be running

Sleep CPU in Standby not clocked. Peripherals stopped except for specifically enabled functions

Power-Down CPU and peripheral functions in reset. No Clocks. Pad configuration maintained.

2.1.1 ACTIVE MODE

The active mode is the default mode after any system reset. In this mode all peripherals are powered and ready to be used. All Low power modes are initiated from the actice mode by executing the HALT instruction.

If using an external high frequency clock input and the derived CPU clock is higher 6MHz the user shall set the bit FrcFastRead which acts as a booster for the Flash reading. For all internal clock selection the boosting is done automatically.

2.2 LOW POWER MODES

The Low power modes are enabled by the CPU HALT instruction execution. The resulting Low power mode selection then depends on the **SelPwrDwn** and **SelSleep** bit settings, both are located in the system register **RegSysCfg1**.

Mode	HALT Instruction	RegSysCfg1.SelSleep	RegSysCfg1.SelPwrDwn
Active	No	X	X
StandBy	Yes	0	0
Sleep	Yes	1	0
Power-Down	Yes	Х	1

2.2.1 STANDBY MODE

This mode is activated by HALT instruction if **SelPwrDwn**='0' and **SelSleep**='0'.

The active clock oscillator for the CPU clock source as selected by **SelCkCR** will be disabled in StandBy mode if it is not used by other block/peripheral or it's not forced-on. The Flash memory is disabled to save power.

If fast wake-up is needed the user can choose to leave the Flash memory enabled in StandBy mode by setting the bit **StdByFastWkUp** in register **RegSysCfg1** to '1'.

Resume from standby mode and going back to active mode with an Event, an Interrupt or a system reset.

Wake-up time from Standby mode is 1.5us if **StdByFastWkUp** ='1' and CPU is on 15 MHz with the 15 MHz RC oscillator forced on.

Wake-up time from Standby mode is 10us if **StdByFastWkUp** ='1' and CPU is on 2 MHz with the 2 MHz RC oscillator forced on.

Wake-up time from Standby mode is 150us if **StdByFastWkUp** ='0' and CPU is on 2 MHz with the 2 MHz RC oscillator forced on.

Wake-up delay is measured from the time of the wake-up event until the result of the first CPU instruction.

The bit **StdByFastWkUp** ='1' will increase the standby power consumption by ~1.5uA at any CPU freq settings except if the CPU is set to RC_15MHz, RC_15MHz/2 or the bit **FrcFastRead** is set. In these cases the extra power consumption will be ~35uA. To avoid this extra 35uA of current the user must predivide the CPU clock just before going to standby mode to values below 6MHz by

- a) use RC 15MHz/4 or lower frequencies based on 2MHz, 32kHz, RC8k,
- b) or in case of external high freq clock input, set the CK_CPU predivider such that the resulting CPU frequeny is below 6MHz

After wake-up the original high frequency CPU clock can immediately be reinstalled with little wake-up time penalty.

Using **StdByFastWkUp** ='1' together with **FrcFastRead**='1' will draw additional 35uA independent of the selected CPU clock source. It should therefore be avoided by clearing FrcFastRead before going into standby mode.

2.2.2 SLEEP MODE

This mode is activated by HALT instruction if **SelPwrDwn**='0' and **SelSleep**='1'.

In Sleep mode the Temperature sensor and the ADC are disabled. All oscillators are forced off except the RC 8kHz oscillator if used for sleep counter wake-up function, for watchdog, forced on, or selected as Ck_Lo clock source. All register data are maintained during sleep. The Flash memory is switched off for power save.

Resume from Sleep mode back to active mode with selected Interrupts and Events or by a system reset or by the sleep counter wakeup function SCWUP.

2.2.3 SLEEP WAKE-UP

Normal Wake-up from Sleep mode will take typically 250us until the 1st instruction after wake-up is executed.

By setting the bit StdByFastWkUp prior to entering sleep mode the wake-up from sleep mode is greatly reduced.

- In case of 2MHz RC Oscillator as CPU clock the wake-up time in fast mode is typically 18us
- In case of 15MHz RC Oscillator as CPU clock the wake-up time in fast mode is typically 11us

This wakeup time is measured from the wake-up event until the 3rd instruction after the wakeup event is changing a port output pin status.

The bit **StdByFastWkUp** ='1' will increase the sleep power consumption by ~1.5uA at any CPU freq settings except if the CPU is set to RC_15MHz, RC_15MHz/2 or the bit **FrcFastRead** is set. In these cases the extra power consumption will be ~35uA. To avoid this extra 35uA of current the user must predivide the CPU clock just before going to sleep mode to values below 6MHz by

- c) use RC_15MHz/4 or lower frequencies based on 2MHz, 32kHz, RC8k,
- d) or in case of external high freq clock input, set the CK_CPU predivider such that the resulting CPU frequeny is below 6MHz

After sleep wake-up the original high frequency CPU clock can immediately be reinstalled with almost no wake-up time penalty.

Using **StdByFastWkUp** ='1' together with **FrcFastRead**='1' will draw additional 35uA independent of the selected CPU clock source. It should therefore be avoided by clearing FrcFastRead before going into sleep mode.

Note:

DC/DC has to be switched off by the user before entering Sleep mode.

Note:

Interrupt sources for wake-up from the Sleep mode are defined in 12.2 Interrupt acquisition Note:

Event sources for wake-up from the Sleep mode are defined in 12.8 Event acquisition

2.2.4 POWER-DOWN MODE

This mode is activated by HALT instruction if **SelPwrDwn=**'1'. All Clocks and oscillators including the RC 8 KHz are stopped. No circuit activity anymore. All register and RAM data are lost in Power-Down mode.

The device is woken-up by a level change on PortA bits or by TM='1'; **RegEnWkUpPA[n]** will enable the related bit of PortA for this purpose when it is at high level. The wake-up from Power-Down acts as a reset, the CPU will start from scratch.

The wake-up time from power down back to active mode is approximativly 6ms, and up to 10ms in low power mode.

Note:

Going into PowerDown mode without pad configuration latch shall be down in the following order:

- 1. Set the wake-up condition
- 2. Write the SelPwrDown bit
- 3. Execute HALT instruction

2.2.4.1 PAD CONFIGURATION LOCK IN POWER-DOWN

If the bit **LckPwrCfg** in register **RegResFlag** is set, the configurations of all Ports bits (direction, pull-up, pull-down, qblock) are locked in the pad latches. As soon as the **LckPwrCfg** is set back to '0' the actual register configuration will be taken over.

Note:

To keep pad configuration in Power-Down mode, SW shall set **LckPwrCfg** to '1' just before going into Power-Down mode and sets it to '0' after wake-up from Power-Down mode.

Note:

Going into PowerDown mode without pad configuration latch shall be down in the following order:

- 1. Set the wake-up condition
- 2. Write the SelPwrDown bit
- 3. Write the LckPwrCfg bit
- 4. Execute HALT instruction

Note:

No data are kept in the registers and in the RAM in the Power-Down mode

2.2.5 OPERATION MODE REGISTERS

0x0000		RegSysCfg1			System Configuration - 1		
Bits	Name	Туре	ResVal	ResSrc	Description		
7	SelSleep	RW	0	ResSys	Select Sleep mode on Halt		
6	SelPwrDwn	RW	0	ResSys	Select Power-Down mode on Halt		
4	EnBrownOut	RW	1	ResAna	Enable Brown Out		
3:2	XtalCldStart	RW	'00'	ResSys	Select Xtal Osc. ColdStart length		
1	StdByFastWkUp	RW	0	ResSys	Stand-by mode fast Wakeup		
0	VSUPLow	RO	0		VSUP is Low - Tripler activated		

0x0006		RegResFl	g		Reset Flags		
Bits	Name	Туре	Type ResVal ResSrc		Description		
7	ResFlgPA	ResFlg	0	PorLog	Flag Reset from Port-A		
6	ResFlgWD	ResFlg	0	PorLog	Flag Reset from WatchDog		
5	ResFlgBO	ResFlg	0	PorLog	Flag Reset from Brown-Out		
4	ResFlgGasp	ResFlg	0	PorLog	Flag Reset from GASP		
3	ResFlgBE	ResFlg	0	PorLog	Flag Reset from CoolRisc Bus-Error		
0	LckPwrCfg	RW	0	Por	Lock configurations to be kept in Power-Down mode		

2.3 REGISTER TYPES

The peripheral registers are of different types. The specific type of the register is marked in its table definition. Used types are: RW, RO, OS, INT, INT-SET, STS, NI, RESFLG

Read-Write Register (RW)

- the software is able to write high and low values
- the software is able to read out the last written value
- the initial and reset value is according to its specified reset value

Read Only register (RO)

- the software is able to read out the current status of the hardware status
- the initial and reset value is according to the value of the initial hardware status or hardware status after reset

One Shot register (OS)

- the software wriring of the specified value is producing the given action
- the software always reads a low value

Interrupt status register (INT)

- Software writing '0' will clear a pending interrupt, clear has priority over a new arriving interrupt.
- Software writing '1' will set the interrupt status bit (software interrupt). This has highest priority.
- If the software reads the interrupt status at '1' it will clear it after the reading.
- If the software reads '0', no action is performed.
- An incoming hardware interrupt event will set the status bit, this action has priority over clear by software read.
- The reset value is '0'

Status register (STS)

- the software can write only the allowed values into the register. These values are specified case-by-case.
- the hardware may also be able to change the register value according to its function
- the access priority software over hardware is specified case-by-case.
- the readou value corresponds to the last change (software or hardware change)
- the initial and reset value are specified case-by-case

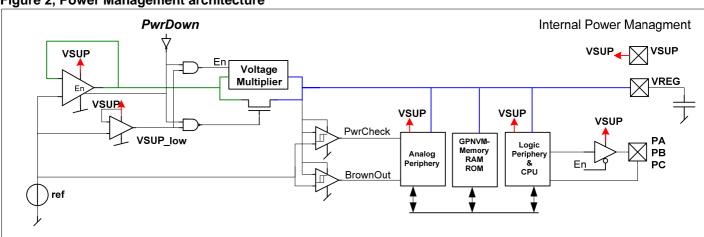
Not Implemented register (NI)

- no action on write
- the software is reading the specified constant value (normaly '0')

Reset flag register (RESFLG)

- an incoming hardware event sets or clears the register according on its specification
- the readout value is according to the last hardware event and specified case-by-case.
- The initial and reset value is according to the value specified case-by-case defined by its last hardware event
- The software is able to clear the flag by writing '1' to it, writing '0' has no effect
- Hardware event has priority over software access.

2.4 POWER MANAGEMENT


The internal voltage regulator and the voltage multiplier assure a constant voltage VREG to the memory cells, GPNVM, RAM, ROM, the logic, the CPU core and sensible analog cells over the whole voltage range.

For voltages below typ 2.2V the internal voltage multiplier may become active and deliver the energy to sustain VREG voltage. While the internal voltage multiplier is enabled the maximum current draw of all VREG supplied peripherals is limited and the user shall not use operation frequencies above 2MHz nor switch on the 15Mhz RC oscillator.

The flag **VSUPLow** shows the status of the voltage multiplier, if read '1' it means the multiplier is active and the current rescrictions apply. On low voltage supply status 1' the internal voltage multiplier maintains VREG voltage.

Full frequency range can be used as long as **VSUPLow** = '0', the voltage multiplier is disabled and the logic regulator maintains VREG stable.

Figure 2, Power Management architecture

2.4.1 BROWNOUT

If enabled, the BrownOut supervises the VREG voltage. As soon as Vreg drop below the minimal safe operation voltage for core operations and as such underpasses the brownout limits, reset **ResBO** is asserted. The circuit goes in reset state and can only recover from reset if the voltage rises above the PwrCheck level. ($V_{PWRCheck} > V_{Brwnout}$).

The brownout can be disabled by **EnBrownOut** bit. The function is also automatically stopped in sleep mode if none of the Bandgap reference, ADC or OPAMP is active.

2.4.2 POWERCHECK

Powercheck is enabled on system power-up, it keeps the circuit in idle state until VREG voltage is sufficient high for safe core operation.

(VREG > V_{PWRCheck} > V_{Brwnout}t) Powercheck is active after initial power-up, wake-up from Power-Down, wake-up from sleep after any system reset

2.4.3 POR

POR circuitry supervises the supply voltage VSUP at start-up and during all operation modes. As long as VSUP is below the V_{POR} voltage the circuit is in reset state. If the VSUP falls below V_{POR} the circuit will enter reset state even if brownout was disabled.

At power-up the POR initializes the whole circuit except the RAM and powercheck is initiated.

2.4.4 POWERMANAGMENT REGISTERS

0x0000		RegSysCfg1			System Configuration - 1
Bits	Name	Туре	ResVal	ResSrc	Description
7	SelSleep	RW	0	ResSys	Select Sleep mode on Halt
6	SelPwrDwn	RW	0	ResSys	Select Power-Down mode on Halt
4	EnBrownOut	RW	1	ResAna	Enable Brown Out
3:2	XtalCldStart	RW	'00'	ResSys	Select Xtal Osc. ColdStart length
1	StdByFastWkUp	RW	0	ResSys	fast Wakeup for Stand-by and Sleep mode
0	VSUPLow	RO	0		VSUP is Low - Tripler activated

2.5 REGISTER MAP

RegName	Address	Init.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RegSysCfg1	000000	0x10	SelSleep	SelPwrDwn	,	EnBrownOut	XtalCldStart(1)	XtalCldStart(0)	StdByFastWkUp	VSUPLow	
RegEnResPA	0×0001	00X0	EnResPA(7)	EnResPA(6)	EnResPA(5)	EnResPA(4)	EnResPA(3)	EnResPA(2)	EnResPA(1)	EnResPA(0)	
RegEnWkUpPA	0x0002	00x0	EnWkUpPA(7)	EnWkUpPA(6)	EnWkUpPA(5)	EnWkUpPA(4)	EnWkUpPA(3)	EnWkUpPA(2)	EnWkUpPA(1)	EnWkUpPA(0)	
RegClockCfg1	0×0003	0x18	SelCkExt(1)	SelCkExt(0)	SelCkHi(1)	SelCkHi(0)	SelCkLo(1)	SelCkLo(0)		FrcFastRead	
RegClockCfg2	0x0004	0x03	FrcEnRC15M	FrcEnRC2M	FrcEnRC8k	FrcEnExt	SelCkCR(3)	SelCkCR(2)	SelCkCR(1)	SelCkCR(0)	
RegClockCfg3	0×0002	0XX0	SelCkPr1(2)	SelCkPr1(1)	SelCkPr1(0)	SelCkPr2(2)	SelCkPr2(1)	SelCkPr2(0)	-		
RegResFlg	9000×0	00X0	ResFlgPA	ResFigWD	ResFlgBO	ResFlgGasp	ResFigBE	,		LckPwrCfg	
RegPrescCfg	0×0007	00x0	Presc1Clr	Presc1Len	Presc1SelIntCk5/3	Presc2Clr			-		
RegPresc1Val	8000×0	0xFF	Presc1Val(7)	Presc1Val(6)	Presc1Val(5)	Presc1Val(4)	Presc1Val(3)	Presc1Val(2)	Presc1Val(1)	Presc1Val(0)	
RegPresc2Val	6000×0	0xFF	Presc2Val(7)	Presc2Val(6)	Presc2Val(5)	Presc2Val(4)	Presc2Val(3)	Presc2Val(2)	Presc2Val(1)	Presc2Val(0)	
RegPADIn	0x000A	00×0	PADIn(7)	PADIn(6)	PADIn(5)	PADIn(4)	PADIn(3)	PADIn(2)	PADIn(1)	PADIn(0)	
RegPADOut	0×000B	00x0	PADOut(7)	PADOut(6)	PADOut(5)	PADOut(4)	PADOut(3)	PADOut(2)	PADOut(1)	PADOut(0)	
RegPAInpE	0x000C	00×0	PAInpE(7)	PAInpE(6)	PAInpE(5)	PAInpE(4)	PAInpE(3)	PAInpE(2)	PAInpE(1)	PAInpE(0)	
RegPAOE	Ox000D	00X0	PAOE(7)	PAOE(6)	PAOE(5)	PAOE(4)	PAOE(3)	PAOE(2)	PAOE(1)	PAOE(0)	
RegPAPU	0×000E	00x0	PAPU(7)	PAPU(6)	PAPU(5)	PAPU(4)	PAPU(3)	PAPU(2)	PAPU(1)	PAPU(0)	
RegPAPD	0x000F	00×0	PAPD(7)	PAPD(6)	PAPD(5)	PAPD(4)	PAPD(3)	PAPD(2)	PAPD(1)	PAPD(0)	
RegPAOD	0x0010	00x0	PAOD(7)	PAOD(6)	PAOD(5)	PAOD(4)	PAOD(3)	PAOD(2)	PAOD(1)	PAOD(0)	
RegPAOutCfg0	0x0011	00x0	PA3OutSel(1)	PA3OutSel(0)	PA2OutSel(1)	PA2OutSel(0)	PA1OutSel(1)	PA1OutSel(0)	PA0OutSel(1)	PA0OutSel(0)	
RegPAOutCfg1	0x0012	00x0	PA7OutSel(1)	PA7OutSel(0)	PA6OutSel(1)	PA6OutSel(0)	PA5OutSel(1)	PA5OutSel(0)	PA4OutSel(1)	PA4OutSel(0)	
RegPADebCfg1	0x0013	00x0	PA3DebSel(1)	PA3DebSel(0)	PA2DebSel(1)	PA2DebSel(0)	PA1DebSel(1)	PA1DebSel(0)	PA0DebSel(1)	PA0DebSel(0)	
RegPADebCfg2	0x0014	00x0	PA7DebSel(1)	PA7DebSel(0)	PA6DebSel(1)	PA6DebSel(0)	PA5DebSel(1)	PA5DebSel(0)	PA4DebSel(1)	PA4DebSel(0)	

www.emmicroelectronic.com

RegName	Address	Init.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegPAIntEdg	0x0015	0xFF	PAIntEdg(7)	PAIntEdg(6)	PAIntEdg(5)	PAIntEdg(4)	PAIntEdg(3)	PAIntEdg(2)	PAIntEdg(1)	PAIntEdg(0)
RegPBDIn	0x0016	0000	PBDIn(7)	PBDIn(6)	PBDIn(5)	PBDIn(4)	PBDIn(3)	PBDIn(2)	PBDIn(1)	PBDIn(0)
RegPBDOut	0x0017	0000	PBDOut(7)	PBDOut(6)	PBDOut(5)	PBDOut(4)	PBDOut(3)	PBDOut(2)	PBDOut(1)	PBDOut(0)
RegPBInpE	0x0018	0000	PBInpE(7)	PBInpE(6)	PBInpE(5)	PBInpE(4)	PBInpE(3)	PBInpE(2)	PBInpE(1)	PBInpE(0)
RegPBOE	0x0019	00×0	PBOE(7)	PBOE(6)	PBOE(5)	PBOE(4)	PBOE(3)	PBOE(2)	PBOE(1)	PBOE(0)
RegPBPU	0x001A	00X0	PBPU(7)	PBPU(6)	PBPU(5)	PBPU(4)	PBPU(3)	PBPU(2)	PBPU(1)	(0)
RegPBPD	0x001B	0000	PBPD(7)	PBPD(6)	PBPD(5)	PBPD(4)	PBPD(3)	PBPD(2)	PBPD(1)	PBPD(0)
RegPBOD	0x001C	0000	PBOD(7)	PBOD(6)	PBOD(5)	PBOD(4)	PBOD(3)	PBOD(2)	PBOD(1)	PBOD(0)
RegPBOutCfg0	0x001D	0000	PB3OutSel(1)	PB3OutSel(0)	PB2OutSel(1)	PB2OutSel(0)	PB1OutSel(1)	PB1OutSel(0)	PB0OutSel(1)	PB0OutSel(0)
RegPBOutCfg1	0x001E	0000	PB7OutSel(1)	PB7OutSel(0)	PB6OutSel(1)	PB6OutSel(0)	PB5OutSel(1)	PB5OutSel(0)	PB4OutSel(1)	PB4OutSel(0)
RegPCDIn	0x001F	0000	PCDIn(7)	PCDIn(6)	PCDIn(5)	PCDIn(4)	PCDIn(3)	PCDIn(2)	PCDIn(1)	PCDIn(0)
RegPCDOut	0x0020	00×0	PCDOut(7)	PCDOut(6)	PCDOut(5)	PCDOut(4)	PCDOut(3)	PCDOut(2)	PCDOut(1)	PCDOut(0)
RegPCInpE	0x0021	00×0	PCInpE(7)	PCInpE(6)	PCInpE(5)	PCInpE(4)	PCInpE(3)	PCInpE(2)	PCInpE(1)	PCInpE(0)
RegPCOE	0x0022	0000	PCOE(7)	PCOE(6)	PCOE(5)	PCOE(4)	PCOE(3)	PCOE(2)	PCOE(1)	(0)BCOE
RegPCPU	0x0023	00×0	PCPU(7)	PCPU(6)	PCPU(5)	PCPU(4)	PCPU(3)	PCPU(2)	PCPU(1)	(o)NAOA
RegPCPD	0x0024	00×0	PCPD(7)	PCPD(6)	PCPD(5)	PCPD(4)	PCPD(3)	PCPD(2)	PCPD(1)	PCPD(0)
RegPCOD	0x0025	00×0	PCOD(7)	PCOD(6)	PCOD(5)	PCOD(4)	PCOD(3)	PCOD(2)	PCOD(1)	PCOD(0)
RegPCOutCfg0	0x0026	00×0	PC3OutSel(1)	PC3OutSel(0)	PC2OutSel(1)	PC2OutSel(0)	PC1OutSel(1)	PC1OutSel(0)	PC0OutSel(1)	PC0OutSel(0)
RegPCOutCfg1	0x0027	0000	PC7OutSel(1)	PC7OutSel(0)	PC6OutSel(1)	PC6OutSel(0)	PC5OutSel(1)	PC5OutSel(0)	PC4OutSel(1)	PC4OutSel(0)
RegPCDebCfg1	0x0028	00×0	PC3DebSel(1)	PC3DebSel(0)	PC2DebSel(1)	PC2DebSel(0)	PC1DebSel(1)	PC1DebSel(0)	PC0DebSel(1)	PC0DebSel(0)
RegPCDebCfg2	0x0029	0000	PC7DebSel(1)	PC7DebSel(0)	PC6DebSel(1)	PC6DebSel(0)	PC5DebSel(1)	PC5DebSel(0)	PC4DebSel(1)	PC4DebSel(0)
RegPCIntEdg	0x002A	0xFF	PCIntEdg(7)	PCIntEdg(6)	PCIntEdg(5)	PCIntEdg(4)	PCIntEdg(3)	PCIntEdg(2)	PCIntEdg(1)	PCIntEdg(0)
RegGaspDIn	0x002B	0000	GaspDIn(7)	GaspDIn(6)	GaspDIn(5)	GaspDIn(4)	GaspDIn(3)	GaspDIn(2)	GaspDln(1)	GaspDIn(0)
RegGaspDOut	0×002C	00×0	GaspDOut(7)	GaspDOut(6)	GaspDOut(5)	GaspDOut(4)	GaspDOut(3)	GaspDOut(2)	GaspDOut(1)	(0)thOQase9

RegDacPM1L DocD CaspTM GaspNode GaspNode GaspNode GaspNode GaspNode GaspNode GaspNode GaspNode GaspNode DocPM1L(7) DocPM1L(5) DocPM1L(4) DocPM1L(4) DocPM1L(4) RegDacPM1L(4) DocPM2L(4) DocPM2L(4) DocPM2L(4) DocPM2L(4) DocPM2L(4) DocPM2L(4) DocPM2L(4) DocPM3L(4) DocP	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x002E 0x00 DocPM1L(7) DocPM1L(6) DocPM1L(5) DocPM1L(4) 0x003F 0x00 - - - - DocPM1L(4) 0x0030 0x00 - - - - DocPM2L(4) 0x0031 0x00 - - - DocPM3L(4) DocPM3L(4) 0x0032 0x00 - - - - DocPM3L(4) 0x0033 0x00 DocPM1L(7) DocPM3L(5) DocPM3L(4) DocPM3L(4) 0x0034 0x00 DocPM1L(7) DocDM1L(6) DocDM1L(4) DocPM3L(4) 0x0035 0x00 DocPM1L(7) DocDM1L(6) DocDM1L(4) DocDM1L(4) 0x0036 0x00 DocPM1L(7) DocDM1L(6) DocDM1L(4) DocDM1L(4) 0x0037 0x00 DocPM1Stat DocDM1L(6) DocDM1L(6) DocDM1L(4) 0x0038 0x00 DocPM1Stat DocPM3Stat DocDM1L(6) DocPM3Stat 0x0039 0x00 CRC16L(7) CRC16L(6) <td< td=""><td>GaspTM</td><td>GaspMode</td><td>GaspSU</td><td>GaspISP</td><td>GaspDoC</td><td>GaspTest</td><td>•</td><td>•</td></td<>	GaspTM	GaspMode	GaspSU	GaspISP	GaspDoC	GaspTest	•	•
οκούσε όχου - - DOCPMZL(5) DOCPMZL(4) οχούσ3 0χού - - - - DOCPMZL(4) 0χούσ3 0χού - - - - DOCPMZL(4) 0χούσ3 0χού - - - - DOCPMZL(4) 0χούσ3 0χού DOCPMZL(7) DOCPMZL(6) DOCPMZL(4) DOCPMZL(4) 0χούσ3 0χού DOCDMIL(7) DOCDMIL(6) DOCDMIL(14) DOCPMZL(4) 0χούσ3 0χού DOCPMIR(7) DOCDMIL(6) DOCDMIL(14) DOCPMIR(14) 0χούσ3 0χού DOCPMIR(7) DOCDMIR(6) DOCDMIR(14) DOCPMIR(14) 0χούσ3 0χού DOCPMIR(7) CRC16DIn(6) CRC16DIn(7) CRC16DIn(7) CRC16DIn(7) CRC16L(6) CRC16L(4) 0χούσ3 0χού CRC16L(7) CRC16L(6) CRC16L(4) CRC16L(4) CRC16L(4) 0χούσ3 0χού TIm12Chain TIm12Puise TIm12Puise TIm12Puise TIm12Puise </td <td>DoCPM1L(7)</td> <td>DoCPM1L(6)</td> <td>DoCPM1L(5)</td> <td>DoCPM1L(4)</td> <td>DoCPM1L(3)</td> <td>DoCPM1L(2)</td> <td>DoCPM1L(1)</td> <td>DoCPM1L(0)</td>	DoCPM1L(7)	DoCPM1L(6)	DoCPM1L(5)	DoCPM1L(4)	DoCPM1L(3)	DoCPM1L(2)	DoCPM1L(1)	DoCPM1L(0)
0x0030 0x00 DocPM2L(7) DocPM2L(6) DocPM2L(5) DocPM2L(4) 0x0031 0x00 - - - DocPM3L(4) 0x0032 0x00 DocPM3L(7) DocPM3L(6) DocPM3L(4) 0x0033 0x00 DocDM1L(7) DocDM1L(6) DocPM3M(4) 0x0034 0x00 DocDM1L(7) DocDM1L(6) DocPM3M(4) 0x0035 0x00 DocDM1L(7) DocDM1L(6) DocDM1L(4) 0x0036 0x00 DocDM1Stat DocDM1M(6) DocDM1L(4) 0x0036 0x00 DocPM1Stat DocDM1XStat DocDM1XStat 0x0038 0x00 CRC16DIn(6) CRC16DIn(6) CRC16DIn(6) 0x0039 0x00 CRC16L(7) CRC16L(6) CRC16DIn(6) 0x0038 0x00 CRC16DIn(7) CRC16DIn(6) CRC16DIn(6) 0x0038 0x00 CRC16L(7) CRC16L(6) CRC16DIn(6) 0x0039 0x00 Tim12Chain Tim1Achain Tim1Achain 0x0030 0x00 Tim1A				DoCPM1M(4)	DoCPM1M(3)	DoCPM1M(2)	DoCPM1M(1)	DoCPM1M(0)
0x0031 0x00 DocPMARL(4) 0x0032 0x00 DocPMSL(7) DocPMSL(6) DocPMSL(4) 0x0033 0x00 - - 0x0034 0x00 DocDMIL(7) DocDMIL(6) DocPMSM(4) 0x0035 0x00 DocDMIL(7) DocDMIL(6) DocDMIL(4) 0x0036 0x00 DocDMIN(7) DocDMIL(6) DocDMIL(4) 0x0037 0x00 DocDMIN(8) DocDMIL(9) DocDMIL(4) 0x0038 0x00 CRC16U(7) CRC16U(6) CRC16U(6) CRC16U(4) 0x0038 0x00 CRC16U(7) CRC16U(6) CRC16U(7) CRC16U(6) CRC16U(7) 0x0038 0x00 TIm12Chain Tim1AR Tim2AR Tim2AR 0x0039 0x00 Tim12Chain Tim1Achain Tim1AR Tim1AR 0x0030 0x00 Tim1AChain(7) Tim1Achain Tim1Achain Tim1Achain 0x003D 0x00 Tim1Achain(7) Tim1Achain(8) Tim1Achain(8)	DoCPM2L(7)	DoCPM2L(6)	DoCPM2L(5)	DoCPM2L(4)	DoCPM2L(3)	DoCPM2L(2)	DoCPM2L(1)	DoCPM2L(0)
0x0032 0x00 DocPM3L(7) DocPM3L(6) DocPM3L(4) DocPM3L(4) 0x0033 0x00 - - - DocPM3M(4) 0x0034 0x00 - - - DocPM1L(4) 0x0035 0x00 DocDM1M(7) DocDM1M(6) DocDM1M(4) DocDM1M(4) 0x0036 0x00 DocCPM1Stat DocDM1M(6) DocDM1M(4) DocDM1M(4) 0x0037 0x00 DocCPM1Stat DocDM1M(6) DocDM1M(4) DocDM1M(4) 0x0038 0x00 CRC16DIn(7) CRC16DIn(6) CRC16L(6) CRC16L(7) 0x0039 0x00 CRC16L(7) CRC16L(6) CRC16L(6) CRC16L(7) 0x003B 0x00 Tim12Chain Tim1AR Tim1AR 0x003C 0x00 Tim1CpEdg(1) Tim1AR Tim1Selstar(1) Cfg 0x003B 0x00 Tim1EnlWM Tim1DelEdg(1) Tim1DelEdg(1) Tim1CpEval(4) 0x0040 0x00 Tim1CpHal(7) Tim1DelEdg(1) Tim1DelEdg(1) Tim1DelEdg(1)		-		DoCPM2M(4)	DoCPM2M(3)	DoCPM2M(2)	DoCPM2M(1)	DoCPM2M(0)
0x0033 0x00 - - DocDM1L(4) DocDM1L(4) 0x0034 0x00 DocDM1L(7) DocDM1L(6) DocDM1L(5) DocDM1L(4) 0x0035 0x00 DocDM1M(7) DocDM1M(5) DocDM1M(4) DocDM1M(4) 0x0036 0x00 DocDM1Stat DocDM1M(5) DocDM1M(4) DocDM1M(4) 0x0038 0x00 DocPM1Stat DocDM1Stat DocDM1Stat DocDM1Stat 0x0039 0x00 CRC16DIn(5) CRC16DIn(6) CRC16DIn(4) CRC16DIn(4) 0x003B 0x00 CRC16M(7) CRC16L(6) CRC16L(1) CRC16L(1) 0x003B 0x00 Tim12Chain Tim14AChain Tim1AR Tim2AR 0x003C 0x00 Tim12Chain Tim14AChain Tim15Biatus(1) Tim15Biatus(1) Cfg 0x003B 0x00 Tim16PiPWM Tim11mtSel Tim15elStatt(1) Cfg 0x003C 0x00 Tim16piEdg(1) Tim16piEdg(1) Tim16piEdg(1) Tim16piEdg(1) 0x0040 0x00 Tim16piEdg(1) </td <td>DoCPM3L(7)</td> <td>DoCPM3L(6)</td> <td>DoCPM3L(5)</td> <td>DoCPM3L(4)</td> <td>DoCPM3L(3)</td> <td>DoCPM3L(2)</td> <td>DoCPM3L(1)</td> <td>DoCPM3L(0)</td>	DoCPM3L(7)	DoCPM3L(6)	DoCPM3L(5)	DoCPM3L(4)	DoCPM3L(3)	DoCPM3L(2)	DoCPM3L(1)	DoCPM3L(0)
0x0034 0x00 DocDM1L(7) DocDM1L(6) DocDM1L(6) DocDM1L(4) 0x0035 0x00 DocDM1M(7) DocDM1M(6) DocDM1M(5) DocDM1M(4) 0x0036 0x00 DocDM1M(7) DocDM3Stat DocDM1Stat DocDM1Stat 0x0038 0x00 CRC16DIn(7) CRC16DIn(6) CRC16DIn(6) CRC16DIn(7) 0x0038 0x00 CRC16L(7) CRC16L(6) CRC16L(5) CRC16L(4) 0x0039 0x00 CRC16L(7) CRC16M(6) CRC16L(6) CRC16L(4) 0x003B 0x00 Tim12Chain Tim34AR Tim2AR 0x003C 0x00 Tim1EnPWM Tim1Pulse Tim1SelStat(1) 0x003C 0x00 Tim1EnPWM Tim1IntSel Tim1SelStat(1) 0x003F 0x00 Tim1Selstat(1) Tim1Selstat(1) Tim1Selstat(1) 0x0040 0x00 Tim1CptVal(7) Tim1CmpVal(6) Tim1CptVal(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) 0x0042 0x00 <				DoCPM3M(4)	DoCPM3M(3)	DoCPM3M(2)	DoCPM3M(1)	DoCPM3M(0)
0x0035 0x00 DocDM1M(7) DocDM1M(6) DocDM1M(5) DocDM1M(1) 0x0036 0x00 DoCEnPM1 DocEnPM3 DocEnPM3 DocEnDM1(1) 0x0038 0x00 DocPM1Stat DocPM2Stat DocDM1Stat 0x0038 0x00 CRC16DIn(7) CRC16L(6) CRC16DIn(5) 0x003B 0x00 CRC16L(7) CRC16L(6) CRC16L(4) 0x003B 0x00 Tim12Chain Tim34Chain Tim1AR Tim2AR 0x003B 0x00 Tim1SWSart Tim1Pulse Tim1SWSart Tim2Pulse 0x003C 0x00 Tim1CptEdg(1) Tim1CptEdg(0) Tim1Status(4) Tim1Status(4) 0x003E 0x00 Tim1Full(7) Tim1Status(6) Tim1Status(5) Tim1Status(4) 0x0040 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) 0x0042 0x00	DoCDM1L(7)	DoCDM1L(6)	DoCDM1L(5)	D ₀ CDM1L(4)	D ₀ CDM1L(3)	D ₀ CDM1L(2)	D ₀ CDM1L(1)	DoCDM1L(0)
0x0036 0x00 DocEnPM1 DocEnPM1 DocEnPM1(1) 0x0037 0x00 DocPM1Stat DocPM2Stat DocPM3Stat DocDM1Stat 0x0038 0x00 CRC16DIn(7) CRC16DIn(6) CRC16DIn(4) CRC16DIn(4) 0x0038 0x00 CRC16L(7) CRC16M(6) CRC16M(5) CRC16L(4) 0x003B 0x00 Tim12Chain Tim34Chain Tim1ARR Tim2AR 0x003C 0x00 Tim1SWStart Tim1Pulse Tim12SWStart Tim12AR 0x003C 0x00 Tim1Status(7) Tim1CptEdg(1) Tim1SelStart(1) Tim1SelStart(1) 0x0040 0x06 Tim1TchIn(7) Tim1Status(6) Tim1CptVal(6) Tim1CptVal(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0043 0x00 Tim2CptVal(7) Tim1CptVal(8) Tim1CptVal(4) Tim1CptVal(4)	DoCDM1M(7)	DoCDM1M(6)	DoCDM1M(5)	DoCDM1M(4)	DoCDM1M(3)	DoCDM1M(2)	D ₀ CDM1M(1)	DoCDM1M(0)
0x0037 0x00 DocPM1Stat DocPM2Stat DocPM3Stat DocDM1Stat 0x0038 0x00 CRC16DIn(7) CRC16DIn(6) CRC16DIn(5) CRC16DIn(4) 0x0039 0x00 CRC16M(7) CRC16M(6) CRC16M(5) CRC16M(4) 0x003B 0x00 Tim12Chain Tim34Chain Tim1ARR Tim2AR 0x003C 0x00 Tim12Chain Tim1Pulse Tim2SWStart Tim2AR 0x003C 0x00 Tim1EnPwM Tim1IntSel Tim1CptEdg(0) Tim1SelStart(1) 0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(6) Tim1CptEdg(0) 0x0040 0xFF Tim1CmPval(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4)	DoCEnPM1	DoCEnPM2	DoCEnPM3	DoCEnDM1(1)	DoCEnDM1(0)	-	1	1
0x0038 0x00 CRC16DIn(7) CRC16DIn(6) CRC16DIn(5) CRC16DIn(4) 0x0039 0x00 CRC16L(7) CRC16L(6) CRC16L(5) CRC16L(4) 0x003A 0x00 Tim12Chain Tim34Chain Tim1AR Tim2AR 0x003B 0x00 Tim12Chain Tim1ALB Tim1AR Tim2AR 0x003C 0x00 Tim1EnPWM Tim1IntSel Tim1SelStart(1) Tim1SelStart(1) 0x003B 0x00 Tim1CptEdg(1) Tim1CptEdg(0) Tim1SelStart(2) Tim1SelStart(1) 0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(4) Tim1Status(4) 0x0040 0x00 Tim1CptVal(7) Tim1CmpVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0043 0x00 Tim2InpsePWM Tim2IntSel Tim1CptVal(4) Tim1CptVal(4)	DoCPM1Stat	DoCPM2Stat	DoCPM3Stat	DoCDM1Stat			1	1
0x0039 0x00 CRC16L(7) CRC16L(6) CRC16L(5) CRC16L(4) 0x003A 0x00 CRC16M(7) CRC16M(6) CRC16M(4) CRC16M(4) 0x003B 0x00 Tim12Chain Tim34Chain Tim1ARR Tim2AR 0x003C 0x00 Tim1EnPwM Tim1IntSel Tim1SelStart(1) Tim1SelStart(1) 0x003F 0x00 Tim1CptEdg(1) Tim1CptEdg(0) Tim1Status(5) Tim1SelStart(1) 0x0040 0x00 Tim1Status(7) Tim1CptVal(6) Tim1CmpVal(4) Tim1CmpVal(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4)	CRC16DIn(7)	CRC16DIn(6)	CRC16DIn(5)	CRC16DIn(4)	CRC16DIn(3)	CRC16DIn(2)	CRC16DIn(1)	CRC16DIn(0)
0x003A 0x00 CRC16M(7) CRC16M(6) CRC16M(5) CRC16M(4) 0x003B 0x00 Tim12Chain Tim34Chain Tim1AR Tim2AR 0x003C 0x00 Tim1EnPWM Tim1Pulse Tim2SWStart Tim12Pulse Cfg 0x003D Tim1CptEdg(1) Tim1CptEdg(0) Tim1CptEvtSrc(1) Tim1SelStart(1) 0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(4) Tim1Status(4) 0x0040 0x0F Tim1CmpVal(7) Tim1CmpVal(6) Tim1CmpVal(4) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(6) Tim1CptVal(4) 0x0043 0x00 Tim2EnPWM Tim1CptVal(6) Tim1CptVal(6) Tim1CptVal(4)	CRC16L(7)	CRC16L(6)	CRC16L(5)	CRC16L(4)	CRC16L(3)	CRC16L(2)	CRC16L(1)	CRC16L(0)
0x003B 0x00 Tim12Chain Tim34Chain Tim1ARR Tim2Pulse 0x003C 0x00 Tim1SWStart Tim1Pulse Tim2SWStart Tim2Pulse 0x003D 0x00 Tim1EnPWM Tim1IntSel Tim1SelStart(1) Tim1SelStart(1) 0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(5) Tim1Status(4) 0x0040 0x00 Tim1Full(7) Tim1Teull(6) Tim1CmpVal(4) Tim1CmpVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(6) Tim1CptVal(4) 0x0043 0x00 Tim2EnPWM Tim1CptVal(6) Tim2SelStart(1)	CRC16M(7)	CRC16M(6)	CRC16M(5)	CRC16M(4)	CRC16M(3)	CRC16M(2)	CRC16M(1)	CRC16M(0)
0x003C 0x00 Tim1EnPWM Tim1IntSel Tim1SelStart(2) Tim1SelStart(1) Cfg 0x003E 0x00 Tim1CptEdg(1) Tim1CptEdg(0) Tim1CptEvtSrc(1) Tim1CptEvtSrc(0) 0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(5) Tim1Status(4) 0x0040 0xF Tim1Full(7) Tim1Full(6) Tim1Full(6) Tim1Full(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(5) Tim1CptVal(4) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(6) Tim1CptVal(4) 0x0043 0x00 Tim2EnPWM Tim2EnSelStart(1) Tim2SelStart(1)	Tim12Chain	Tim34Chain	Tim1AR	Tim2AR	Tim3AR	Tim4AR	Tim1SWCpt	Tim3SWCpt
Ox003D Ox00 Tim1EnPWM Tim1IntSel Tim1SelStart(1) Tim1SelStart(1) Tim1SelStart(1) Tim1SelStart(1) Tim1SelStart(1) Tim1SelStart(1) Tim1CptEvtSrc(0) Tim1CptEvtSrc(0) Tim1CptEvtSrc(0) Tim1CptEvtSrc(0) Tim1Status(4) Tim1Status(4) Tim1Status(4) Tim1Status(4) Tim1Status(4) Tim1Status(4) Tim1CmpVal(4) Tim1CmpVal(4) Tim1CmpVal(4) Tim1CptVal(4) Tim1CptVal(4) Tim1CptVal(4) Tim1CptVal(4) Tim1CptVal(4) Tim2SelStart(1)	Tim1SWStart	Tim1Pulse	Tim2SWStart	Tim2Pulse	Tim3SWStart	Tim3Pulse	Tim4SWStart	Tim4Pulse
ofg 0x003E Tim1CptEdg(1) Tim1CptEdg(0) Tim1CptEvtSrc(1) Tim1CptEvtSrc(0) 0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(5) Tim1Status(4) 0x0040 0xFF Tim1Full(7) Tim1Full(6) Tim1Full(4) Tim1Full(4) 0x0041 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(4) Tim1CptVal(4) 0x0042 0x00 Tim2EnPWM Tim2EntSel Tim2SelStart(1)	Tim1EnPWM	Tim1IntSel	Tim1SelStart(2)	Tim1SelStart(1)	Tim1SelStart(0)	Tim1SelClk(2)	Tim1SelClk(1)	Tim1SelClk(0)
0x003F 0x00 Tim1Status(7) Tim1Status(6) Tim1Status(5) 0x0040 0xFF Tim1Full(7) Tim1Full(6) Tim1Full(5) 0x0041 0x00 Tim1CmpVal(7) Tim1CmpVal(6) Tim1CmpVal(5) 0x0042 0x00 Tim2EnPWM Tim1CptVal(6) Tim2SelStart(2)	Tim1CptEdg(1)	Tim1CptEdg(0)	Tim1CptEvtSrc(1)	Tim1CptEvtSrc(0)	Tim1CmpFullAct(1)	Tim1CmpFullAct(0)	Tim1CmpValAct(1)	Tim1CmpValAct(0)
0x0040 0xFF Tim1Full(7) Tim1Full(6) Tim1Full(5) 0x0041 0x00 Tim1CmpVal(7) Tim1CmpVal(6) Tim1CptVal(5) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim2CptVal(5) 0x0043 0x00 Tim2EnPWM Tim2IntSel Tim2SelStart(2)	Tim1Status(7)	Tim1Status(6)	Tim1Status(5)	Tim1Status(4)	Tim1Status(3)	Tim1Status(2)	Tim1Status(1)	Tim1Status(0)
0x0041 0x00 Tim1CmpVal(7) Tim1CmpVal(6) Tim1CmpVal(5) 0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(5) 0x0043 0x00 Tim2EnPWM Tim2IntSel Tim2SelStart(2)	Tim1Full(7)	Tim1Full(6)	Tim1Full(5)	Tim1Full(4)	Tim1Full(3)	Tim1Full(2)	Tim1Full(1)	Tim1Full(0)
0x0042 0x00 Tim1CptVal(7) Tim1CptVal(6) Tim1CptVal(5) 0x0043 0x00 Tim2EnPWM Tim2IntSel Tim2SelStart(2)	Tim1CmpVal(7)	Tim1CmpVal(6)	Tim1CmpVal(5)	Tim1CmpVal(4)	Tim1CmpVal(3)	Tim1CmpVal(2)	Tim1CmpVal(1)	Tim1CmpVal(0)
0x0043 0x00 Tim2EnPWM Tim2IntSel Tim2SelStart(2)	Tim1CptVal(7)	Tim1CptVal(6)	Tim1CptVal(5)	Tim1CptVal(4)	Tim1CptVal(3)	Tim1CptVal(2)	Tim1CptVal(1)	Tim1CptVal(0)
	Tim2EnPWM	Tim2IntSel	Tim2SelStart(2)	Tim2SelStart(1)	Tim2SelStart(0)	Tim2SelClk(2)	Tim2SelClk(1)	Tim2SelClk(0)
RegTim2CptCmpCfg 0x0044 Tim2CptEdg(1) Tim2CptEdg(0) Tim2CptEvtSrc(1) Tim2CptEvtSrc(0) T	Tim2CptEdg(1)	Tim2CptEdg(0)	Tim2CptEvtSrc(1)	Tim2CptEvtSrc(0)	Tim2CmpFullAct(1)	Tim2CmpFullAct(0)	Tim2CmpValAct(1)	Tim2CmpValAct(0)

RegName	Address	Init.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegTim2Status	0x0045	00×0	Tim2Status(7)	Tim2Status(6)	Tim2Status(5)	Tim2Status(4)	Tim2Status(3)	Tim2Status(2)	Tim2Status(1)	Tim2Status(0)
RegTim2Full	0x0046	0xFF	Tim2Full(7)	Tim2Full(6)	Tim2Full(5)	Tim2Full(4)	Tim2Full(3)	Tim2Full(2)	Tim2Full(1)	Tim2Full(0)
RegTim2CmpVal	0x0047	00×0	Tim2CmpVal(7)	Tim2CmpVal(6)	Tim2CmpVal(5)	Tim2CmpVal(4)	Tim2CmpVal(3)	Tim2CmpVal(2)	Tim2CmpVal(1)	Tim2CmpVal(0)
RegTim2CptVal	0x0048	00×0	Tim2CptVal(7)	Tim2CptVal(6)	Tim2CptVal(5)	Tim2CptVal(4)	Tim2CptVal(3)	Tim2CptVal(2)	Tim2CptVal(1)	Tim2CptVal(0)
RegTim3Cfg	0x0049	00×0	Tim3EnPWM	Tim3IntSel	Tim3SelStart(2)	Tim3SelStart(1)	Tim3SelStart(0)	Tim3SelClk(2)	Tim3SelClk(1)	Tim3SelClk(0)
RegTim3CptCmpCfg	0×004A	00×0	Tim3CptEdg(1)	Tim3CptEdg(0)	Tim3CptEvtSrc(1)	Tim3CptEvtSrc(0)	Tim3CmpFullAct(1)	Tim3CmpFullAct(0)	Tim3CmpValAct(1)	Tim3CmpValAct(0)
RegTim3Status	0x004B	00×0	Tim3Status(7)	Tim3Status(6)	Tim3Status(5)	Tim3Status(4)	Tim3Status(3)	Tim3Status(2)	Tim3Status(1)	Tim3Status(0)
RegTim3Full	0x004C	0xFF	Tim3Full(7)	Tim3Full(6)	Tim3Full(5)	Tim3Full(4)	Tim3Full(3)	Tim3Full(2)	Tim3Full(1)	Tim3Full(0)
RegTim3CmpVal	0x004D	00×0	Tim3CmpVal(7)	Tim3CmpVal(6)	Tim3CmpVal(5)	Tim3CmpVal(4)	Tim3CmpVal(3)	Tim3CmpVal(2)	Tim3CmpVal(1)	Tim3CmpVal(0)
RegTim3CptVal	0x004E	00×0	Tim3CptVal(7)	Tim3CptVal(6)	Tim3CptVal(5)	Tim3CptVal(4)	Tim3CptVal(3)	Tim3CptVal(2)	Tim3CptVal(1)	Tim3CptVal(0)
RegTim4Cfg	0x004F	00×0	Tim4EnPWM	Tim4IntSel	Tim4SelStart(2)	Tim4SelStart(1)	Tim4SelStart(0)	Tim4SelClk(2)	Tim4SelClk(1)	Tim4SelClk(0)
RegTim4CptCmpCfg	0x0050	00×0	Tim4CptEdg(1)	Tim4CptEdg(0)	Tim4CptEvtSrc(1)	Tim4CptEvtSrc(0)	Tim4CmpFullAct(1)	Tim4CmpFullAct(0)	Tim4CmpValAct(1)	Tim4CmpValAct(0)
RegTim4Status	0x0051	00×0	Tim4Status(7)	Tim4Status(6)	Tim4Status(5)	Tim4Status(4)	Tim4Status(3)	Tim4Status(2)	Tim4Status(1)	Tim4Status(0)
RegTim4Full	0x0052	0xFF	Tim4Full(7)	Tim4Full(6)	Tim4Full(5)	Tim4Full(4)	Tim4Full(3)	Tim4Full(2)	Tim4Full(1)	Tim4Full(0)
RegTim4CmpVal	£500×0	00×0	Tim4CmpVal(7)	Tim4CmpVal(6)	Tim4CmpVal(5)	Tim4CmpVal(4)	Tim4CmpVal(3)	Tim4CmpVal(2)	Tim4CmpVal(1)	Tim4CmpVal(0)
RegTim4CptVal	0x0054	00×0	Tim4CptVal(7)	Tim4CptVal(6)	Tim4CptVal(5)	Tim4CptVal(4)	Tim4CptVal(3)	Tim4CptVal(2)	Tim4CptVal(1)	Tim4CptVal(0)
RegADCCfg1	0x0055	00×0	EnADC	RunContMeas	RunSinglMeas	EnTempSens	ADCSmpIRate(2)	ADCSmpIRate(1)	ADCSmplRate(0)	ADC8bit
RegADCCfg2	9500×0	00×0	ADCSelRef(1)	ADCSelRef(0)	ADCSelRange(1)	ADCSelRange(0)	ADCLowNoise		-	•
RegADCOut0	2500x0	00×0	ADCOut0(7)	ADCOut0(6)	ADCOut0(5)	ADCOut0(4)	ADCOut0(3)	ADCOut0(2)	ADCOut0(1)	ADCOut0(0)
RegADCOut1	8500x0	00×0	ADCBusy	ADCSelSrc(2)	ADCSelSrc(1)	ADCSelSrc(0)	StsTempSens	ADCOutLSB	ADCOut1(1)	ADCOut1(0)
RegADCOffsetL	0x0059	00×0	ADCOffsetL(7)	ADCOffsetL(6)	ADCOffsetL(5)	ADCOffsetL(4)	ADCOffsetL(3)	ADCOffsetL(2)	ADCOffsetL(1)	ADCOffsetL(0)
RegADCOffsetM	0×005A	0x04		1	ı			ADCOffsetM(2)	ADCOffsetM(1)	ADCOffsetM(0)
RegOpAmpCfg1	8500×0	00×0	EnOpAmp	EnComp	OpAmpSup	CompRes	SelCompInt(1)	SelCompInt(0)	-	1
RegOpAmpCfg2	0×005C	00×0	OpAmpSelInpPos(1)	OpAmpSelInpPos(0)	OpAmpSelInpNeg(1)	OpAmpSelInpNeg(0)	OpAmpSelOut	•	-	•
			4							

	Address	Init.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegDC-DCCfg	0x005D	00×0	EnDC-DC	DC-DCLevel(1)	DC-DCLevel(0)	DC-DCIdle	DC-DCStartSts			•
RegVLDCfg1	0x005E	00×0	EnVLD	VLDRes	VLDSelSrc(2)	VLDSelSrc(1)	VLDSelSrc(0)			,
RegVLDCfg2	0x005F	00×0	1	,	•	VLDSelLvl(4)	VLDSeILvI(3)	VLDSelLvI(2)	VLDSelLvI(1)	VLDSelLvI(0)
RegBgrCfg	0900×0	00×0	BgrEnOut	NVMEnWrite	•	•	•		-	•
RegInt0Sts	0x0061	00×0	Int0StsPort(0)	Int0StsTim1	Int0StsPr1Ck0	Int0StsADC	Int0StsDoCDM	Int0StsDoCPM	Int0StsGasp	Int0StsPMMiss
RegInt1Sts	0x0062	00×0	Int1StsPort(2)	Int1StsPort(1)	Int1StsTim2	Int1StsTim3	Int1StsOpAmp	Int1StsPr1Ck5/3	Int1StsSPIStop	Int1StsSPIStart
RegInt2Sts	0×0063	00×0	Int2StsVLD	Int2StsSlpCnt	Int2StsPort(7)	Int2StsPort(6)	Int2StsPort(5)	Int2StsPort(4)	Int2StsPort(3)	Int2StsTim4
RegInt0Msk	0x0064	00×0	Int0MskPort(0)	Int0MskTim1	Int0MskPr1Ck0	IntOMskADC	Int0MskDoCDM	IntOMskDoCPM	IntOMskGasp	IntOMskPMMiss
RegInt1Msk	0×0065	00×0	Int1MskPort(2)	Int1MskPort(1)	Int1MskTim2	Int1MskTim3	Int1MskOpAmp	Int1MskPr1Ck5/3	Int1MskSPIStop	Int1MskSPIStart
Regint2Msk	9900×0	00×0	Int2MskVLD	Int2MskSlpCnt	Int2MskPort(7)	Int2MskPort(6)	Int2MskPort(5)	Int2MskPort(4)	Int2MskPort(3)	Int2MskTim4
RegInt0PostMsk	0×0067	00×0	Int0PostMskPort(0)	Int0PostMskTim1	Int0PostMskPr1Ck0	Int0PostMskADC	Int0PostMskDoCDM	Int0PostMskDoCPM	Int0PostMskGasp	IntOPostMskPMMiss
RegInt1PostMsk	0×0068	00×0	Int1PostMskPort(2)	Int1PostMskPort(1)	Int1PostMskTim2	Int1PostMskTim3	Int1PostMskOpAmp	Int1PostMskPr1Ck5/3	Int1 PostMskSPIStop	Int1PostMskSPIStart
Regint2PostMsk	6900×0	00×0	Int2PostMskVLD	Int2PostMskSlpCnt	Int2PostMskPort(7)	Int2PostMskPort(6)	Int2PostMskPort(5)	Int2PostMskPort(4)	Int2PostMskPort(3)	Int2PostMskTim4
RegIntPortSrc	0x006A	00×0	IntPortSrc(7)	IntPortSrc(6)	IntPortSrc(5)	IntPortSrc(4)	IntPortSrc(3)	IntPortSrc(2)	IntPortSrc(1)	IntPortSrc(0)
RegEvtSts	0×006B	00×0	•	•	•	•	Evt1StsSlpCnt	Evt1StsSPI	Evt1StsADC	Evt0StsGasp
RegEvtCfg	Ox006C	00×0	Evt1PostMskSC	Evt1MskSC	Evt1PostMskSPI	Evt1MskSPI	Evt1PostMskADC	Evt1MskADC	Evt0PostMskGasp	Evt0MskGasp
RegWDCfg	Д900x0	00×0	SIQQM	•	•				-	WDClear
RegWDKey	3900×0	00×0	WDKey(7)	WDKey(6)	WDKey(5)	WDKey(4)	WDKey(3)	WDKey(2)	WDKey(1)	WDKey(0)
RegWDLdValL	0x006F	0x00	WDLdValL(7)	WDLdValL(6)	WDLdValL(5)	WDLdValL(4)	WDLdValL(3)	WDLdValL(2)	WDLdValL(1)	WDLdValL(0)
RegWDLdValM	0X00X0	0x80	WDLdVaIM(7)	WDLdValM(6)	WDLdValM(5)	WDLdValM(4)	WDLdVaIM(3)	WDLdValM(2)	WDLdValM(1)	WDLdValM(0)
RegWDStatL	0x0071	00×0	WDStatL(7)	WDStatL(6)	WDStatL(5)	WDStatL(4)	WDStatL(3)	WDStatL(2)	WDStatL(1)	WDStatL(0)
RegWDStatM	0x0072	0x80	WDStatM(7)	WDStatM(6)	WDStatM(5)	WDStatM(4)	WDStatM(3)	WDStatM(2)	WDStatM(1)	WDStatM(0)
RegSCCfg	0x0073	0x00	SCDis	SCStart	-	-	•		•	•
RegSCLdVal0	0x0074	0x00	SCLdVal0(7)	SCLdVal0(6)	SCLdVal0(5)	SCLdVal0(4)	SCLdVal0(3)	SCLdVal0(2)	SCLdVal0(1)	SCLdVal0(0)

RegSCLdVal1 0x0075 0x80 SCLdVal(7) RegSCLdVal2 0x0076 0x00 SCLdVal(7) RegSCStat0 0x0077 0x00 SCStat1(7) RegSCStat1 0x0078 0x00 SCStat1(7) RegSCStat2 0x007A 0x00 SCStat2(7) RegSPICfg1 0x007A 0x00 SPISeISCIK(1) RegSPICfg1 0x007C 0x00 SPISeISCIK(1) RegSPIDIn 0x007C 0x00 SPISIIn(7) RegSPIDIn 0x007E 0x00 SPISIIN(7) RegCacheB01 0x00 CacheB00(7) RegCacheB01 0x0280 0x00 CacheB01(7) RegCacheB03 0x0283 0x00 CacheB03(7) RegCacheB05 0x0284 0x00 CacheB04(7) RegCacheB06 0x00 CacheB06(7) RegCacheB06 0x00 CacheB06(7)	al 1 (7) al 2 (7) at 0 (7) at 1 (7) En SCIk (1) Start in (7)	SCLdVal1(6) SCLdVal2(6) SCStat0(6) SCStat2(6) SPIMode(2) SPISelSCIK(0) - SPIDIn(6) SPIDOut(6) CacheB00(6)	SCLdVal1(5) SCLdVal2(5) SCStat0(5) SCStat1(5) SCStat2(5) SPIMode(1) SPISelSIn(1) - SPIDIn(5)	SCLdVal1(4) SCLdVal2(4) SCStat0(4) SCStat1(4) SCStat2(4) SPIMode(0)	SCLdVal1(3) SCLdVal2(3) SCStat0(3)	SCLdVal1(2) SCLdVal2(2)	SCLdVal1(1) SCLdVal2(1)	SCLdVal1(0) SCLdVal2(0)
2 0x0076 0x00 0x0077 0x00 0x0078 0x80 0x0079 0x00 0x007A 0x03 0x007C 0x00 0x007D 0x00 0x007E 0x00 1 0x0281 0x00 2 0x0281 0x00 4 0x0283 0x00 5 0x0285 0x00 6 0x0286 0x00	a12(7) at0(7) at1(7) En En SCIK(1) Start in(7)	SCLdVal2(6) SCStat0(6) SCStat1(6) SCStat2(6) SPIMode(2) SPIDIn(6) SPIDOut(6) CacheB00(6)	SCLdVal2(5) SCStat0(5) SCStat1(5) SCStat2(5) SPIMode(1) SPISelSIn(1) - SPIDIn(5)	SCLdVal2(4) SCStat0(4) SCStat1(4) SCStat2(4) SPIMode(0)	SCLdVal2(3) SCStat0(3)	SCLdVal2(2)	SCLdVal2(1)	SCLdVal2(0)
0x0077 0x00 0x0078 0x80 0x0079 0x00 0x0079 0x00 0x007A 0x03 0x007B 0x00 0x007C 0x00 0x007C 0x00 1 0x0281 0x00 2 0x0281 0x00 2 0x0283 0x00 4 0x0285 0x00 5 0x0286 0x00	at1(7) at2(7) at2(7) En SCIk(1) Start In(7)	SCStat0(6) SCStat2(6) SCStat2(6) SPIMode(2) SPISelSCIk(0) - SPIDIn(6) SPIDOut(6) CacheB00(6)	SCStat0(5) SCStat1(5) SCStat2(5) SPIMode(1) SPISelSIn(1) - SPIDIn(5)	SCStat0(4) SCStat1(4) SCStat2(4) SPIMode(0)	SCStat0(3)			SCStat0(0)
0x0078 0x80 0x0079 0x00 0x007A 0x03 0x007B 0x00 0x007C 0x00 0x007D 0x00 0x007E 0x00 0x0281 0x00 2 0x0281 0x00 4 0x0283 0x00 5 0x0285 0x00 6 0x0285 0x00	at1 (7) at2 (7) En SCIK(1) Start In (7)	SCStat1(6) SCStat2(6) SPIMode(2) SPISelSCIK(0) - SPIDIn(6) SPIDOut(6) CacheB00(6)	SCStat1(5) SCStat2(5) SPIMode(1) SPISelSIn(1) - SPIDIn(5)	SCStat1(4) SCStat2(4) SPIMode(0) SPISelSIn(0)		SCStat0(2)	SCStat0(1)	(0)
0x0079 0x00 0x007A 0x03 0x007B 0x00 0x007C 0x00 0x007C 0x00 0x007E 0x00 1 0x0281 0x00 2 0x0281 0x00 3 0x0283 0x00 4 0x0285 0x00 5 0x0286 0x00	er2(7) En SCIk(1) Start In(7)	SCStat2(6) SPIMode(2) SPISelSCIk(0) - SPIDIn(6) SPIDOut(6) CacheB00(6)	SCStat2(5) SPIMode(1) SPISelSIn(1) - SPIDIn(5)	SCStat2(4) SPIMode(0) SPISelSIn(0)	SCStat1(3)	SCStat1(2)	SCStat1(1)	SCStat1(0)
0x007A 0x03 0x007B 0x00 0x007C 0x00 0x007D 0x00 0 0x0280 0x00 1 0x0281 0x00 2 0x0283 0x00 4 0x0285 0x00 5 0x0286 0x00 6 0x0287 0x00	En SCIk(1) start in(7)	SPIMode(2) SPISelSCIK(0) - SPIDIn(6) SPIDOut(6)	SPIMode(1) SPISelSin(1) - SPIDin(5) SPIDOut(5)	SPISelSIn(0)	SCStat2(3)	SCStat2(2)	SCStat2(1)	SCStat2(0)
0x007B 0x00 0x007C 0x00 0x007D 0x00 1 0x0281 0x00 2 0x0281 0x00 3 0x0283 0x00 4 0x0285 0x00 5 0x0286 0x00	SCIk(1) Start In(7) Out(7)	SPISelSCIk(0) - SPIDIn(6) SPIDOut(6) CacheB00(6)	SPISelSin(1) - SPIDin(5) SPIDOut(5)	SPISelSIn(0)	SPINegEdg	SPIRTO	SPIMSB1st	SPIAutoStart
0x007C 0x00 0x007D 0x00 0 0x0280 0x00 1 0x0281 0x00 2 0x0282 0x00 3 0x0283 0x00 4 0x0285 0x00 6 0x0286 0x00	start In(7) Out(7)	SPIDIn(6) SPIDOut(6) CacheB00(6)	SPIDIn(5) SPIDOut(5)			,	,	•
0x007D 0x00 0x007E 0x00 1 0x0280 0x00 2 0x0281 0x00 3 0x0282 0x00 4 0x0284 0x00 5 0x0285 0x00 6 0x0286 0x00	In(7) Jut(7)	SPIDIn(6) SPIDOut(6) CacheB00(6)	SPIDIn(5) SPIDOut(5)			,	,	•
0 0x007E 0x00 1 0x0280 0x00 2 0x0281 0x00 3 0x0283 0x00 4 0x0284 0x00 5 0x0285 0x00 6 0x0287 0x00)ut(7)	SPIDOut(6) CacheB00(6)	SPIDOut(5)	SPIDIn(4)	SPIDIn(3)	SPIDIn(2)	SPIDIn(1)	SPIDIn(0)
0x0280 0x00 0x0281 0x00 0x0282 0x00 0x0283 0x00 0x0284 0x00 0x0285 0x00		CacheB00(6)		SPIDOut(4)	SPIDOut(3)	SPIDOut(2)	SPIDOut(1)	SPIDOut(0)
0x0281 0x00 0x0282 0x00 0x0283 0x00 0x0284 0x00 0x0286 0x00	300(7)		CacheB00(5)	CacheB00(4)	CacheB00(3)	CacheB00(2)	CacheB00(1)	CacheB00(0)
0x0282 0x00 0x0283 0x00 0x0284 0x00 0x0285 0x00	301(7)	CacheB01(6)	CacheB01(5)	CacheB01(4)	CacheB01(3)	CacheB01(2)	CacheB01(1)	CacheB01(0)
0x0283 0x00 0x0284 0x00 0x0286 0x00 0x0286 0x00	302(7)	CacheB02(6)	CacheB02(5)	CacheB02(4)	CacheB02(3)	CacheB02(2)	CacheB02(1)	CacheB02(0)
0x0284 0x00 0x0285 0x00 0x0286 0x00	303(7)	CacheB03(6)	CacheB03(5)	CacheB03(4)	CacheB03(3)	CacheB03(2)	CacheB03(1)	CacheB03(0)
0x0285 0x00	304(7)	CacheB04(6)	CacheB04(5)	CacheB04(4)	CacheB04(3)	CacheB04(2)	CacheB04(1)	CacheB04(0)
0x0286 0x00	305(7)	CacheB05(6)	CacheB05(5)	CacheB05(4)	CacheB05(3)	CacheB05(2)	CacheB05(1)	CacheB05(0)
0x0287 0x00	306(7)	CacheB06(6)	CacheB06(5)	CacheB06(4)	CacheB06(3)	CacheB06(2)	CacheB06(1)	CacheB06(0)
	307(7)	CacheB07(6)	CacheB07(5)	CacheB07(4)	CacheB07(3)	CacheB07(2)	CacheB07(1)	CacheB07(0)
RegCacheB08 0x0288 0x00 CacheB08(7)	308(7)	CacheB08(6)	CacheB08(5)	CacheB08(4)	CacheB08(3)	CacheB08(2)	CacheB08(1)	CacheB08(0)
RegCacheB09	309(7)	CacheB09(6)	CacheB09(5)	CacheB09(4)	CacheB09(3)	CacheB09(2)	CacheB09(1)	CacheB09(0)
RegCacheB10	310(7)	CacheB10(6)	CacheB10(5)	CacheB10(4)	CacheB10(3)	CacheB10(2)	CacheB10(1)	CacheB10(0)
RegCacheB11 0x028B 0x00 CacheB11(7)	311(7)	CacheB11(6)	CacheB11(5)	CacheB11(4)	CacheB11(3)	CacheB11(2)	CacheB11(1)	CacheB11(0)
RegCacheB12 0x028C 0x00 CacheB12(7)	312(7)	CacheB12(6)	CacheB12(5)	CacheB12(4)	CacheB12(3)	CacheB12(2)	CacheB12(1)	CacheB12(0)
RegCacheB13 0x028D 0x00 CacheB13(7)	313(7)	CacheB13(6)	CacheB13(5)	CacheB13(4)	CacheB13(3)	CacheB13(2)	CacheB13(1)	CacheB13(0)

RegName	Address	Init.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegCacheB14	0x028E	00X0	CacheB14(7)	CacheB14(6)	CacheB14(5)	CacheB14(4)	CacheB14(3)	CacheB14(2)	CacheB14(1)	CacheB14(0)
RegCacheB15	0x028F	00X0	CacheB15(7)	CacheB15(6)	CacheB15(5)	CacheB15(4)	CacheB15(3)	CacheB15(2)	CacheB15(1)	CacheB15(0)
RegCacheB16	0x0290	00X0	CacheB16(7)	CacheB16(6)	CacheB16(5)	CacheB16(4)	CacheB16(3)	CacheB16(2)	CacheB16(1)	CacheB16(0)
RegCacheB17	0x0291	00X0	CacheB17(7)	CacheB17(6)	CacheB17(5)	CacheB17(4)	CacheB17(3)	CacheB17(2)	CacheB17(1)	CacheB17(0)
RegCacheB18	0x0292	00X0	CacheB18(7)	CacheB18(6)	CacheB18(5)	CacheB18(4)	CacheB18(3)	CacheB18(2)	CacheB18(1)	CacheB18(0)
RegCacheB19	0x0293	00X0	CacheB19(7)	CacheB19(6)	CacheB19(5)	CacheB19(4)	CacheB19(3)	CacheB19(2)	CacheB19(1)	CacheB19(0)
RegCacheB20	0x0294	00X0	CacheB20(7)	CacheB20(6)	CacheB20(5)	CacheB20(4)	CacheB20(3)	CacheB20(2)	CacheB20(1)	CacheB20(0)
RegCacheB21	0x0295	00X0	CacheB21(7)	CacheB21(6)	CacheB21(5)	CacheB21(4)	CacheB21(3)	CacheB21(2)	CacheB21(1)	CacheB21(0)
RegCacheB22	0x0296	00X0	CacheB22(7)	CacheB22(6)	CacheB22(5)	CacheB22(4)	CacheB22(3)	CacheB22(2)	CacheB22(1)	CacheB22(0)
RegCacheB23	0x0297	00X0	CacheB23(7)	CacheB23(6)	CacheB23(5)	CacheB23(4)	CacheB23(3)	CacheB23(2)	CacheB23(1)	CacheB23(0)
RegCacheB24	0x0298	00X0	CacheB24(7)	CacheB24(6)	CacheB24(5)	CacheB24(4)	CacheB24(3)	CacheB24(2)	CacheB24(1)	CacheB24(0)
RegCacheB25	0x0299	00X0	CacheB25(7)	CacheB25(6)	CacheB25(5)	CacheB25(4)	CacheB25(3)	CacheB25(2)	CacheB25(1)	CacheB25(0)
RegCacheB26	0x029A	00×0	CacheB26(7)	CacheB26(6)	CacheB26(5)	CacheB26(4)	CacheB26(3)	CacheB26(2)	CacheB26(1)	CacheB26(0)
RegCacheB27	0x029B	00X0	CacheB27(7)	CacheB27(6)	CacheB27(5)	CacheB27(4)	CacheB27(3)	CacheB27(2)	CacheB27(1)	CacheB27(0)
RegCacheB28	0x029C	00X0	CacheB28(7)	CacheB28(6)	CacheB28(5)	CacheB28(4)	CacheB28(3)	CacheB28(2)	CacheB28(1)	CacheB28(0)
RegCacheB29	0x029D	00X0	CacheB29(7)	CacheB29(6)	CacheB29(5)	CacheB29(4)	CacheB29(3)	CacheB29(2)	CacheB29(1)	CacheB29(0)
RegCacheB30	0x029E	00X0	CacheB30(7)	CacheB30(6)	CacheB30(5)	CacheB30(4)	CacheB30(3)	CacheB30(2)	CacheB30(1)	CacheB30(0)
RegCacheB31	0x029F	00X0	CacheB31(7)	CacheB31(6)	CacheB31(5)	CacheB31(4)	CacheB31(3)	CacheB31(2)	CacheB31(1)	CacheB31(0)
RegCacheCfg1	0x02A0	00X0	1		CacheRow(5)	CacheRow(4)	CacheRow(3)	CacheRow(2)	CacheRow(1)	CacheRow(0)
RegCacheCfg2	0x02A1	0x80	NVMFastProg	•		•	•	CacheSector(2)	CacheSector(1)	CacheSector(0)
RegTrimOsc15M	0x02A2	0x80	TrimOsc15M(7)	TrimOsc15M(6)	TrimOsc15M(5)	TrimOsc15M(4)	TrimOsc15M(3)	TrimOsc15M(2)	TrimOsc15M(1)	TrimOsc15M(0)
RegTrimOsc2M	0x02A3	0x80	TrimOsc2M(7)	TrimOsc2M(6)	TrimOsc2M(5)	TrimOsc2M(4)	TrimOsc2M(3)	TrimOsc2M(2)	TrimOsc2M(1)	TrimOsc2M(0)
RegTrimVLD	0x02A4	80x0		•	•	,	TrimVLD(3)	TrimVLD(2)	TrimVLD(1)	TrimVLD(0)
RegStsCStart	0x02A5	0x39			StsCSReson	StsCSXtal	StsCSPad	StsCSRC8k	StsCSRC2M	StsCSRC15M

0004000	A 2121.000	7:50	D:47	JT:Q	37:0	P:77	C7: Q	07:0	77:0	01:0
regname	Address Init.	INIT.	BIL/	BITO	BITO	DIT4	BITS	BIT.2	DITI	BITU
RegStsEnOsc	0x02A6	90×0				StsEnReson	StsEnXtal	StsEnRC8k	StsEnRC2M	StsEnRC15M
RegCkSw1	0x02A7	0x12	CkSwSeIX	CkSwStsX	CkSwSelHi(2)	CkSwSeIHi(1)	CkSwSelHi(0)	CkSwStsHi(2)	CkSwStsHi(1)	CkSwStsHi(0)
RegCkSw2	0x02A8	0x24			CkSwSelLo(2)	CKSwSelLo(1)	CkSwSelLo(0)	CkSwStsLo(2)	CkSwStsLo(1)	CKSwStsLo(0)

2.6 PORT TERMINAL CONNECTION REFERENCE TABLE

و ب <u>ـ</u>			ا ا	_		_		_								_						_	_	_			_	_			I	
high : drive			뮈	보	보	무	불	보							모	무					무	문	보	모	보		무	무				
PWM FrqOut			sig	sig	sig	sig	sig	sig					sig	sig				sig	sig		sig	sig		sig	sig	sig	sig	sig				
Timer start									start1_in		start2_in	start3_in	start4_in		start5_in	start6_in							start7_in									
Timer clock									t1ck0_in		t2ck0_in	t2ck1_in	t3ck0_in		t4ck0_in	t4ck1_in							t1ck1_in			t3ck1_in						
CLOCK									+		ţ	+	+		4-0	+-		N X	XOUT ExtCk				ţ			+						
GASP (GASP-SCK	GASP-SIO												GASP-Sel											no DCDC)	
<u>a</u>			SCLK		SOUT								SOUT	SOUT				SIS					SCLK	SCLK	SOUT		SIS				onded, if	
OPAMP											OPA_Out	OPA_Out	OPA_INM	OPA_INM	OPA_INP	OPA_INP															, open (not k	Suc
VLD	pι										۸۲D	VLD	VLD									VLD	۸۲D	VLD	VLD						Version	C version
VREF	double bor												/ref_ADC											Vref_out						e noise	of DCDC	r non DCE
Reset & WkUp	pad to reduce double bond								Rst_Wkup0		Rst_Wkup1		Rst_Wkup2 Vref_ADC		Rst_Wkup3		pacitor	Rst_Wkup4			Rst_Wkup5			Rst_Wkup6 Vref_out	Rst_Wkup7					protection pad to reduce noise	nection in case of DCDC Version, open (not bonded, if no DCDC)	not bonded for non DCDC versions
ADC		SS							ADC0			ADC3	ADC4	ADC5	ADC6	ADC7	use external Cap													rotection	Soil conn	-
RQ	VSS protection	main VSS							PAIRQ0	PCIRQ0	PAIRQ1	PCIRQ1	PAIRQ2	PAIRQ2	PAIRQ3 ADC6	PCIRQ3 ADC7	use exte	PAIRQ4	PCIRQ4		PAIRQ5	PCIRQ5	PCIRQ6	PAIRQ6	PAIRQ7	PCIRQ7				VSUP _p	DCDC Coil con	VSS for DCDC
Base	SUP	SUP	OI	0	0	0	0	0	0	0	0	0	<u>o</u>	0	0	0	SUP	0	<u>o</u>	Z	0	0	0	0	0	0	0	0	SUP	SUP	SUP	SUP
Name	VSS2	SSA	3 PB2	PB3	PB4	PB5	PB6	PB7	PA0	PC0	PA1	PC1	PA2	PC2	PA3	PC3	VREG	PA4	PC4	MΤ	PA5	22 PC5	92	9Ac	A7	PC7	PB0	PB1	ANSA	VSUP2	DCDC	VSSDCDC
chip Nbr	1	2 \	3 6	4	5 F	9		8		10 F	11 F	12 F	13 F	14 F	15 PA3	16 F	17/	18 F	19		21 F	22 F	23 F	24 PA6	25 F	26 F	27 F	28 F	767			32

www.emmicroelectronic.com

16 IO/SOUT/Rst7/ 15 IO/SCLK/Rst6/ IO/SCLK/Rst6/ Vref/VLD 14 IO/SCLK/Tim/ 19 IO/SCLK GASP-Sel IO/ExtCK/ Xout GASP-Sel γo 20 10 13 12 18 7 17 8 9 2 PA7 /SUP 8-Lead SOIC-150 Σ 20-Lead TSSOP EM6819FX-XXX EM6819FX-XXX 4.40mm body EM6819 EM6819 Vreg PA2 22 PA3 PA4 7 က 4 0 2 IO/SIN/Rst4/ 10 IO/Tim/Rst3/ 8 VLD/ADC2/OPA-Out 5 IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM ADCS/OPA-INM 7 IO/SOUT 1 IO/GASP-CK IO/GASP-CK IO/GASP-DIO IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM IO/GASP-DIO TSSOP Package Pinout Circuit without DC-DC and S08 18 IO/SOUT/Rst7/ 17 IO/SCLK/Rst6/ 13 IO/SCLK/Rst6/ 16 IO/SCLK/Tim/ 12 IO/SCLK/Tim/ 9 IO/SIN/Rst4/ 10 IO/ExtCK/ 24 IO/SOUT 13 GASP-Sel 11 GASP-Sel 22 IO/SCLK 16 IO/SCLK 19 IO/Tim 14 IO/Rst5/ 15 IO/ 23 10 15 20 14 21 24-Lead TSSOP EM6819FX-XXX 16-Lead TSSOP EM6819FX-XX5 4.40mm body EM6819FX-XX6 4.40mm body EM6819 EM6819 PB5 PC2 PA3 PC4 80 0 IO/ExtCK/ IO/Tim/Rst3/ 7 ADC5/OPA-INM 8 IO/Tim/Rst3/ 9 ADC6/OPA-INP 10 IO/SIN/Rst4/ VLD/ADC2/OPA-Out 4 IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM ADC5/OPA-INM 6 IO/GASP-CK VLD/ADC2/OPA-Out 5 VLD/ADC3/OPA-Out 6 IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM 7 IO/GASP-DIO 3 IO/Tim/Rst0/ ADC0 IO/GASP-DIO IO/GASP-CK TUOS/OI IO/SOUT/Rst7/ IO/SCLK/Rst6/ Vref/VLD 13 IO/SOUT/Rst7/ 12 IO/SCLK/Rst6/ 18 IO/SCLK/Tim/ 11 IO/SCLK/Tim/ 10 GASP-Sel IO/ExtCK/ Xout 15 GASP-Sel 28 IO/SOUT 26 IO/SCLK PB2 16 IO/SCLK 16 IO/Rst5/ 22 IO/SIN 21 IO/Tim ≥ 9 27 10 0 စ 23 20 19 17 15 14 24 22 PA7 PA6 **VSUP** /SS VSUP PC5 28-LeadTSSOP EM6819FX-XXX 16-Lead TSSOP EM6819FX-XX0 EM6819FX-XX4 4.40mm body 4.40mm body EM6819 EM6819 PB4 Vreg PB5 PA0 PC0 PA2 PC2 PA3 PC3PA4 PC1 PC4 PA2 PA3 PA1 IO/SIN/Rst4/ 8 PA4 1 ADC1 5 12 IO/SIN/Rst4/ IO/Tim/Rst3/ ADC6/OPA-INP ADC7/OPA-INP 11 IO/ExtCK/ 14 VLD/ADC2/OPA-Out 4 IO/Tim/Rst3/ 6 ADC6/OPA-INP 6 IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM ADCS/OPA-INM 9 IO/GASP-CK 2 IO/SIN/SOUT/Tim/Rst2/ 5 ADC4/VLD/OPA-INM IO/GASP-CK 2 IO/GASP-DIO 3 IO/Tim/Rst0/ 4 IO/Tim/Rst1/ 6 10/sout IO/GASP-DIO 3 VLD/ADC3/OPA-Out 7

2.7 TSSOP PACKAGE PINOUT CIRCUIT WITH DC-DC

28-Lead TSSOP 4.40mm body EM6819FX-XXX

	IO/Rst5/ GASP-Sel	17	PAS	12 Pos 13 Vreq		ADC7/OPA-INP
) WIE DO
	IO/ VLD	18	PC5	PA3	=	IO/Tim/Rst3/ ADC6/OPA-INP
IO/SIN/Rst4/ Xin	IO/SCLK/Tim/ VLD	19	PC6	PC2	19	IO/SOUT/ ADC5/OPA-INM
	IO/SCLK/Rst6/ Vref/VLD	20	PA6	PA2	6	IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM
IO/Tim/Rst3/ ADOS/OPA-INP	IO/SOUT/Rst7/ VLD	21	819 OC	PG	∞	IO/Tim/ VLD/ADC3/OPA-Out
IO/SOUT/ ADC5/OPA-INM		22	168 CE	PA1	_/	IO/Tim/Rst1/ VLD/ADC2/OPA-Out
IO/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM	VSUP protect	23	EN D	PC0	9	NO ADC1
IO/Tim/Rst1/ VLD/ADC2/OPA-Out		24	DCDC	PA0	2	IO/Tim/Rst0/ ADC0
IO/GASP-DIO		25	VSSDCDC	PB7	4	IO/GASP-DIO
IO/GASP-CK	VSS protect	26	VSS2	PB6	က	IO/GASP-CK
TUOS/OI		27	VSS	PB5	2	OI
IO/SCLK	IO/SCLK	28	PB2	₽B4	_	TUOSOUT

16-Lead TSSOP 4.40mm body EM6819FX-XXX

IO/SINRst4/ 14 PA4

16 VSS protect	15	14	13 VSUP protect	12	11 IOSCLK/Rsi6/	10 IO/SCLK/Tim/	9 GASP-Sel
• VSS2	VSSDCDC	DCDC	EN D	168 CE	319 319 319	Pce	ТM
VSS	PB6	PB7	PA1	PA2	PC2	PA3	Vreg
_	7	က	4	2	ဖ	_	ω
	IO/GASP-CK	IO/GASP-DIO	IO/Tim/Rst1/ VLD/ADC2/OPA-Out	O/SIN/SOUT/Tim/Rst2/ ADC4/VLD/OPA-INM	IO/SOUT/ ADCS/OPA-INM	IO/Tim/Rst3/ ADC6/OPA-INP	

14 IO/SCLK/Rsf6/ Vref/VLD

13 IO/SCLK/Tim/

12 GASP-Sel 11 IO/ExtCK/

10

16 VSUP protect

15

EM6819 DCDC

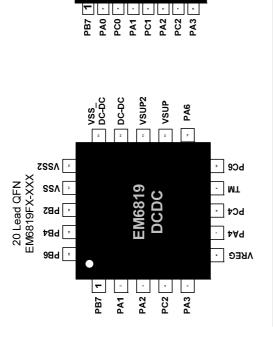
9

VSS2 19 VSS protect

VSSDCDC 18

17

VSS 20

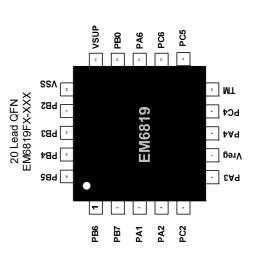

PB2

4.40mm body EM6819FX-XXX 20-Lead TSSOP

www.emmicroelectronic.com

2.8 QFN PACKAGES WITH AND WITHOUT DCDC

with DCDC



DCDC
VSUP2
VSUP2
VSUP4
V

DCDC

PC3 - PC4 - PA4 - PA4 - PA4 - PA4 - PA4 - PA4 - PA6 -

32 Lead QFN EM6819FX-XXX

without DCDC

www.emmicroelectronic.com

3. CPU CORE CR816

The full detail of the used CoolRISC 816L core is described in [1].

A brief overview of its highlights is given below.

- 8-bits RISC register-memory processor based on a Harvard architecture
- 3 stage pipeline (no delay slots or branch delays)
- 176 Kbytes max Program Memory size (64 KInstruction, 22 bit wide)
- 64 Kbytes max Data Memory size (organized in 256 x 256 Kbytes pages)
- 8 max hardware subroutines and unlimited software subroutines
- 8 bit x 8 bit hardware multiplier
- 5 addressing modes
 - direct addressing
 - indexed addressing with immediate offset
 - indexed addressing with register offset
 - indexed addressing with postincrementation of the offset
 - indexed addressing with predecrementaion of the offset
- 16 CPU internal registers (Accu, general purpose, Index, offset, status)

The Instruction Set is composed of

- Branch Instructions
- Transfer Instructions
- Arithmetic and Logical Instructions
- Special Instructions

Unlike most RISC processors, the CR816L provides instructions which can perform arithmetic and logical operations with operands stored either in the data memory or in internal registers.

Similarly to classic 8-bit processors, the CR816L architecture provides an accumulator located at the ALU output that stores the last ALU result.

All arithmetic operations support both signed and unsigned operations.

Mnemonic	ALU instruction	Description
ADD	yes	Addition.
ADDC	yes	Addition with carry.
AND	yes	Logical AND.
CALL	no	Jump to subroutine.
CALLS	no	Jump to subroutine, using ip as return address.
CMP	yes	Unsigned compare.
CMPA	yes	Signed compare.
CMVD	yes	Conditional move, if carry clear.
CMVS	yes	Conditional move, if carry set.
CPL1	yes	One's complementation.
CPL2	yes	Two's complementation.
CPL2C	yes	Two's complementation with carry.
DEC	yes	Decrementation.
DECC	yes	Decrementation with carry.
HALT	no	Halt mode selection.
INC	yes	Increment.
INCC	yes	Increment with carry.
Jcc	no	Conditional jump.
MOVE	yes	Data move.
MUL	yes	Unsigned multiplication.
MULA	yes	Signed multiplication.
NOP	no	No operation.
OR	yes	Logical OR.
POP	no	Pop ip index from hardware stack.
PUSH	no	Push ip index onto hardware stack.
RET	no	Return from subroutine.
RETI	no	Return from interrupt.
SFLAG	yes	Save flags.
SHL	yes	Logical shift left.
SHLC	yes	Logical shift left with carry.
SHR	yes	Logical shift right.
SHRA	yes	Arithmetic shift right.
SHRC	yes	Logical shift right with carry.
SUBD	yes	Subtraction (op1 - op2).
SUBDC	yes	Subtraction with carry (op1 - op2).
SUBS	yes	Subtraction (op2 - op1).
SUBSC	yes	Subtraction with carry (op2 - op1).
TSTB	yes	Test bit.
XOR	yes	Logical exclusive OR.

3.1 PM_MISS FUNCTION (FLASH READ MONITOR)

In extreme conditons (very low temperature and ck_hi > 15MHz) the NVM time access could be longer than a CPU cycle. In this case a pm_miss is generated, meaning that the CPU will automatically wait an additional cycle before to fetch the current instruction read in the NVM. Doing so, it guaranttees that the system never fails even if the CPU is running faster than the NVM. Interrupt of priority 0 Int0StsPmMiss is generated on each pm_miss.

4. NVM MEMORY

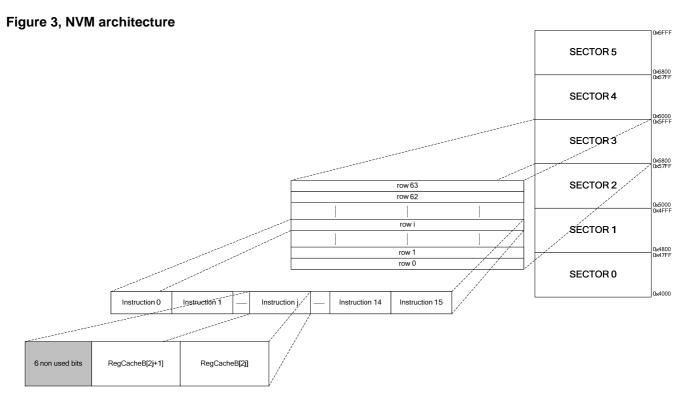
4.1 INTRODUCTION

The circuits Non Volatile Memory (NVM) is used to store the application softwarebut it may also be used to store data (constants or variables). The same physical memory area is shared between the instruction code and the data's. The boundary in this general purpose NMV memory (GPNVM) between the instruction code and the data's is not fixed in detail by hardware but given by the linker after compilation.

The data read access in NVM (see chapter "Read data in NVM") is executed as a simple register access.

The data write access in NVM (see chapter "Write data in NVM") is not executed with a simple MOVE. It is necessary to store the data's in an intermediate memory called RAM cache and to execute an API sub-routine in the ROM.

NVM data read access needs 2 CPU cycles, 1st the read instruction followed with an NVM data access. During the date access phase the CPU is in a wait state. The CR816 instruction is a 22 bits wide bus. When the CPU reads the NVM through the data's bus, 22 bits are read but only 2 bytes (16-bits) are accessed (the other 6 bits are used for verification).


Note:

If the additional 6 bits are not equal to 0x3F, the read access to the previous read pair of bytes is denied. The system interprets this access as a forbidden access to the program memory area (code protection feature)

Instruction read by CPU is straight foreward; all instruction read take 1 CPU cycle.

4.2 NVM ARCHITECTURE

The NVM is divided in 6 sectors, each sector is devided in 64 rows and each row contains either 16 instructions or 32 data bytes. A single row shall not share instructions and data bytes. From the CPU data bus interface point of view, the NVM is mapped from address 0x4000 to 0x6FFF as shown in the following diagram.

Note:

The row 63 and 62 of sector 5 is reserved for trimming word and unique ID code. Write access in this row is denied. The row 61 of sector 5 is used for NVM memory dump and external read/write access protection.

4.3 RAM CACHE

The RAM cache is an image of 1 row of the NVM. The write access to the NVM is done row by row. After selecting the row and the sector to access, the RAM cache contents are copied in the selected row by the CPU executing a CALL of the API sub-routine in the ROM.

The RAM cache is mapped as follows:

DM address (HEX)	RAM cache byte
0x0280	RegCacheB00
0x0281	RegCacheB01
0x0282	RegCacheB02
0x0283	RegCacheB03
0x0284	RegCacheB04
0x0285	RegCacheB05
0x0286	RegCacheB06
0x0287	RegCacheB07
0x0288	RegCacheB08
0x0289	RegCacheB09
0x028A	RegCacheB10
0x028B	RegCacheB11
0x028C	RegCacheB12
0x028D	RegCacheB13
0x028E	RegCacheB14
0x028F	RegCacheB15
0x0290	RegCacheB16
0x0291	RegCacheB17
0x0292	RegCacheB18
0x0293	RegCacheB19
0x0294	RegCacheB20
0x0295	RegCacheB21
0x0296	RegCacheB22
0x0297	RegCacheB23
0x0298	RegCacheB24
0x0299	RegCacheB25
0x029A	RegCacheB26
0x029B	RegCacheB27
0x029C	RegCacheB28
0x029D	RegCacheB29
0x029E	RegCacheB30
0x029F	RegCacheB31

4.4 WRITE DATA IN NVM

Only erased memory space can be written. Write applies always to one full row. Erase and write operation are handled by API-subroutines.

4.4.1 ROW AND SECTOR SELECTION

Write access is done row by row (32 bytes at a time). The row selection needs to be done before calling the API subroutine.

RegCacheCfg1[5:0] in address 0x02A0 is the row pointer from, it may take values from 0x00 and 0x3F (row 63). **RegCacheCfg2[2:0]** in address 0x02A1 is the sector pointer, it may take values from 0x00 and 0x05.

4.4.2 FAST/SLOW OPERATION

In low voltage conditions (**VSUPLow** in register **RegSysCfg1** = '1') all erase and write accesses to the NVM should be done using the corresponding *erase_x_slow_x* and *write_x_slow_x* API subroutine. The '*slow*' API routines will take more time to execute but will draw instantly less current.

4.4.3 ERASE

Erase is a mandatory step before write. The NVM erase state is high, write state low. Only Row erase or sector erase are allowed, below table summaries the available API routines

sub-routines	Description	Duration	
erase_sector_apl	Erase the selected sector [4:0].	2 ms	
	Erase sector 5 is denied.	2 1115	
erase_sector_slow_apl	Erase the selected sector [4:0] in slow mode.	3 ms	
erase_sector_slow_apr	Erase sector 5 is denied.	31118	
	Erase the selected row [63:0] in the selected		
erase_row_apl	sector [5:0].	2 ms	
	Erase row 63 & 62 in sector 5 is denied.		
	Erase the selected row [63:0] in the selected		
erase_row_slow_apl	sector [5:0] in slow mode.	3 ms	
	Erase row 63 & 62 in sector 5 is denied.		

Accessing above routines will use the sector and row pointers as defined in RegCacheCfg2,1

4.4.4 WRITE

Before writing a specific row, the RAM cache needs to get the new data, the sector and row pointers need to be set according to the desired NVM location, and once everything setup, the CPU may call one of the below listed API subroutines to write the NVM row. Write access is row by row only.

Write row x API routines include also the erase row. It is therefore not necessary to erase the row before.

Write_only_x routines do not include the erase. These routines may only be used if the addressed row was erased earlier.

sub-routines	Description	Duration
	Erase and write the selected row [63:0] in the	
write_row_apl	selected sector [5:0].	3 ms
	Access row 63 & 62 in sector 5 is denied.	
	Erase and write the selected row [63:0] in the	
write_row_slow_apl	selected sector [5:0] in slow mode.	4.5 ms
	Access row 63 & 62 in sector 5 is denied.	
	Only write the selected row [63:0] in the selected	
write_only_apl	sector [5:0].	1 ms
	Write row 63 & 62 in sector 5 is denied.	
	Only write the selected row [63:0] in the selected	
write_only_slow_apl	sector [5:0] in slow mode.	1.5 ms
	Write row 63 & 62 in sector 5 is denied.	

Note:

It is not allowed to re-write more a given row without prior erase

4.5 ROW 61 SECTOR 5

It is possible to protect the NVM against undesired external access through the GASP interface. There are two kind of protection:

Lock: No code or data modification from GASP are allowed; Sector and row erase, write_row and write_only are impossible. Specific GASP reads remain possible in specific user authorized

areas.

TLock: Same as Lock but in addition: It's impossible to analyse the NVM data over the GASP

interface even with the factory test modes.

TLock and Lock are bytes store in row 61 of sector 5. TLock is at address 0x6FDF (**RegCacheB31**) and 0x6FDE (**RegCacheB30**). They are active (NVM protected) when they are equal to 0x4E.

As mentioned above, it is possible to open external access (GASP access) in read mode in a part of the NVM. The start and stop address of this window is stored in the row 61 of sector 5. The stop and start address are mapped as follows:

Limit	DM address	RAM cache
Start address MSB	0x6FDD	RegCacheB29
Start address LSB	0x6FDC	RegCacheB28
Stop address MSB	0x6FDB	RegCacheB27
Stop address LSB	0x6FDA	RegCacheB26

The rest of the row 61 of sector 5 is reserved and shall not be accessed by the user.

4.6 ROW 62 SECTOR 5

The row 62 of sector 5 contains different trimming values that are not copied automatically after reset but available to the user. The structure of this row is as follows:

DM Address	Mapped in RAM cache	Function
0x6FDF:D2	RegCacheB31:16	Reserved
0x6FD1	RegCacheB17	Contains MSB[10:8] of ADC offset trim with range 3/8
0x6FD0	RegCacheB16	Contains LSB[7:0] of ADC offset trim with range 3/8
0x6FCF	RegCacheB15	Contains MSB[10:8] of ADC offset trim with range 4/8
0x6FCE	RegCacheB14	Contains LSB[7:0] of ADC offset trim with range 4/8
0x6FCD	RegCacheB13	Contains MSB[10:8] of ADC offset trim with range 6/8
0x6FCC	RegCacheB12	Contains LSB[7:0] of ADC offset trim with range 6/8
0x6FCB	RegCacheB11	Contains MSB[10:8] of ADC offset trim with range 8/8
0x6FCA	RegCacheB10	Contains LSB[7:0] of ADC offset trim with range 8/8
0x6FC9	RegCacheB9	Contains MSB[10:8] of ADC offset using temperature sensor
0x6FC8	RegCacheB8	Contains LSB[7:0] of ADC offset using temperature sensor
0x6FC7:C6	RegCacheB7:6	Reserved
0x6FC5	RegCacheB5	Contains MSB[10:8] of temperature sensor result at 60°C
0x6FC4	RegCacheB4	Contains LSB[7:0] of temperature sensor result at 60°C
0x6FC3	RegCacheB3	Contains MSB[10:8] of temperature sensor result at 25°C
0x6FC2	RegCacheB2	Contains LSB[7:0] of temperature sensor result at 25°C
0x6FC1	RegCacheB1	Contains RC 15MHz trimming value at 60°C
0x6FC0	RegCacheB0	Contains RC 2MHz trimming value at 60°C

The user can not update the values in sector 5 row 62, write access is denied.

4.6.1 TEMPERATURE TOLERANCE

Above calibration values are measured under the following temperature tolerances:

Nominal temperature	Tolerance
25°C	-3°C / +5°C
60°C	+/- 3°C

Note:

These tolerances have no influence on the RC temperature compensation procedure. It depends only on the linearity of the RC trim and temperature sensor.

4.7 ROW 63 SECTOR 5

The row 63 of sector 5 contains the different trimming values used by the system to position the device at power-up and after each reset. It contains also one unique ID code and a CRC code of the row to check at any time the data integrity of this row.. The structure of this row is as follows:

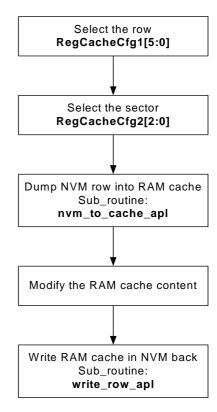
DM Address	Mapped in RAM cache	Function
0x6FFF:FE	RegCacheB31:30	Reserved
0x6FFD	RegCacheB29	Contains RC 15MHz oscillator trimming byte @ 25°C
0x6FFC	RegCacheB28	Contains RC 2MHz oscillator trimming byte @ 25°C
0x6FFB:FA	RegCacheB27:26	Reserved
0x6FF9	RegCacheB25	Contains VLD trimming value
0x6FF8:F3	RegCacheB24:19	Reserved
0x6FF2:F1	RegCacheB18:17	CRC calculated on 29:19,14
0x6FF0:EB	RegCacheB16:11	Reserved
0x6FEA:E4	RegCacheB10:4	Unique ID code
0x6FE3:E0	RegCacheB3:0	Reserved

The user can not update the values in sector 5 row 63 & 62, write access is denied.

4.8 READ DATA IN NVM

Read access to NVM memory is done like a register read access. However only data values may be read, any access to instruction code through the data memory bus in read mode is denied. The limit between data values and instruction code is defined by the linker during compilation. As it is mentioned above, the NVM is mapped in possible data memory areas as follows:

Sector	DM address (HEX)
0	0x4000 to 0x47FF
1	0x4800 to 0x4FFF
2	0x5000 to 0x57FF
3	0x5800 to 0x5FFF
4	0x6000 to 0x67FF
5	0x6800 to 0x6FFF


When NVM is accessed through the data memory bus, the execution of software is stopped during one cycle (wait state) as the data memory is shared with program memory. Reading NVM accesses always 22 bits split in three elements (2 bytes and 6bits). The two bytes are stored in a buffer; the 6 additional bits discarded. If this pair of bytes is accessed successively, the data memory buffer is read directly and the NVM is not accessed (no wait cycle).

4.9 ROW TO CACHE

When the user wants to change one byte or even one bit in the NVM, he has to write the entire row where the modification has to be done.

To simplify this procedure, a sub-routine able to dump one full row to the RAM chache exists: $nvm_to_cache_apl$. The user has to specify the row (RegCacheCfg1) and the sector (RegCacheCfg2) pointers. After modifying the byte or the bit directly in the RAM cache he can write it's contents back into the NVM using sub-routine $write_row_apl$.

Figure 4, Row to Cache flowchart

4.9.1 NVM CONFIGURATION REGISTERS

0x02A	10	RegCacheCfg1			NVM Row Cache Configuration - 1	
Bits	Name	Туре	ResVal	ResSrc	Description	
7:6	-	NI	-	-	Not implemented	
5:0	CacheRow	RW	0x00	ResSys	NVM Row Cache: Row number of Sector (CacheSector)	

0x02A1		RegCacheCfg2			NVM Row Cache Configuration - 2
Bits	Name	Туре	ResVal	ResSrc	Description
7	NVMFastProg	RW	1	ResSys	NVM fast programming mode
2:0	CacheSector	RW	'000'	ResSys	NVM Row Cache: Sector number

Note:

The bit **NVMFAstProg** is automatically set in the ROM API routine. It is set to '0' automatically when a slow operation is called, otherwise it is set to '1'.

0x028		RegCacheB00 to RegCacheB31			NVM Row Cache Byte-0 to NVM Row Cache Byte-31
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	CacheB00	RW	0x00	ResSys	NVM Row Cache Byte-0
7:0	CacheB31	RW	0x00	ResSys	NVM Row Cache Byte-31

5. CRC CHECK

5.1 CRC CHECK ON PROGRAM AREA

It is possible, at any time, to check the content of the NVM by calculating the CRC on the program memory. A sub-routine dedicated for this procedure exists: *calc_crc_code_apl*. The start and stop address of the area to check shall be given as parameter to the sub-routine as follows:

Parameter	Location (CPU Index registers)
CRCStartAddrMSB	r3
CRCStartAddrLSB	r2
CRCStopAddrMSB	r1
CRCStopAddrLSB	r0

CRCStopAddr shall be higher to CRCStartAddr otherwise the routine fails and the result is not guaranteed. The full NVM memory range in program memory area is mapped as follows:

Sector	PM address (HEX)
0	0x0000 to 0x03FF
1	0x0400 to 0x07FF
2	0x0800 to 0x0BFF
3	0x0C00 to 0x0FFF
4	0x1000 to 0x13FF
5	0x1400 to 0x17FF

The CRC made on program memory checks all the content of the NVM including the 6 additional bits that are not accessed through the data memory bus.

Note:

The user can make a CRC on the full NVM including the row 63 & 62 of sector 5. But in this case the CRC will not be constant between different devices.

5.2 CRC CHECK ON DATA AREA

It is possible, at any time, to check the content of the NVM by calculating the CRC on the data memory area. A sub-routine dedicated for this procedure exists: *calc_crc_code_apl*. The start and stop address of the area to check shall be given as parameter to the sub-routine as follows:

Parameter	Location (CPU Index registers)
CRCStartAddrMSB	r3
CRCStartAddrLSB	r2
CRCStopAddrMSB	r1
CRCStopAddrLSB	r0

CRCStopAddr shall be higher to CRCStartAddr otherwise the routine fails and the result is not guaranteed. The full NVM memory range in data memory area is mapped as follows:

Sector	DM address (HEX)
0	0x4000 to 0x47FF
1	0x4800 to 0x4FFF
2	0x5000 to 0x57FF
3	0x5800 to 0x5FFF
4	0x6000 to 0x67FF
5	0x6800 to 0x6FFF

The CRC made on data memory does not check all the content of the NVM because it excludes the 6 additional bits. It should be used to check constant tables for instance and not the program code integrity.

The CRC calculation on data is also possible in the RAM area which is mapped on the following addresses:

Block	DM address (HEX)
RAM	0x0080 to 0x027F

6. ROM API ROUTINES

The circuit has a ROM memory used for the following purposes: Refer also to [2].

- System Boot sequence
- Erase/write operation in NVM
- Dump NVM row into RAM cache
- CRC calculation on NVM or RAM
- ISP functions (Program loading, CRC check)

6.1 BOOT SEQUENCE

This sequence runs after any reset. Depending on the reset source, the boot sequence can change as follows:

Reste source	Description	Duration
Start-up Power-Down wake- up VSUP Low (1.0V)	Power-up (voltage-multiplier rising up and power check) All trimming value are copied from NVM into the related registers	7 ms
Start-up Power-Down wake- up VSUP High (2.5V)	Power-up (power check) All trimming value are copied from NVM into the related registers	5 ms
ResAna	All trimming value are copied from NVM into the related registers	3.5 ms
ResSys	No trimming value are copied from NVM into the related registers.	1 ms

At the end of the boot sequence the watchdog is cleared. The user application software starts. All registers have the value as described in the register map depending what reset source is the cause of the boot sequence.

6.2 SUB-ROUTINES USED FOR APPLICATION

Using sub-routine in ROM API has an impact on the execution time and the memory. The following table shows for each application routine the number of CPU instructions needed to execute the sub-routine and the addresses in RAM memory used by the sub-routine "software stack" that cannot be recovered.

ROM API sub-routine does not use any fixed RAM address for parameter storage. All local variables needed by any of the application sub-routine are stored on the software stack, thus the application programmer shall ensure that:

- 1. The software stack pointer points to the RAM before any call of the application routine. The software stack pointer is i3 register of CR816. The i3 stack pointer is not initialised by the ROM SW boot sequence. It is under the programmer responsibility to initialise it after boot sequence.
- 2. The application does not use the memory in range i3 points too. Depending on the sub-routine, this range can be from i3-21 to i3. All data stored in this range before calling the sub-routine may be lost. It is advised to reserve 22 bytes for software stack in RAM to ensure that any sub-routine will never erase important data.

Routine name	Stack requirements (bytes)	Execution time
cacl_crc_code_apl	12 bytes	11.2N + 66 (-3%; +7%) instructions N = stop_address - start_address + 1
cacl_crc_data_apl	10 bytes	6N + 64 (-4%; +3%) instructions N = stop_address - start_address + 1
erase_row_apl	22 bytes	2 ms (no fixed number of instruction)
erase_row_slow_apl	22 bytes	3 ms (no fixed number of instruction)
erase_sector_apl	22 bytes	2 ms (no fixed number of instruction)
erase_sector_slow_apl	22 bytes	3 ms (no fixed number of instruction)
nvm_to_cache	14 bytes	351 instructions
write_only_apl	22 bytes	1 ms (no fixed number of instruction)
write_only_slow_apl	22 bytes	1.5 ms (no fixed number of instruction)
write_row_apl	22 bytes	3 ms (no fixed number of instruction)
write_row_slow_apl	22 bytes	4.5 ms (no fixed number of instruction)
get_def		Copy's row 63 in RAM cache
get_trim		Copy's row 62 in RAM cache

7. RAM

RAM memory size is 512 bytes mapped in the data memory bus. It can be divided in two parts: the first part accessible with direct addressing instruction and the second part not accessible by direct addressing instructions as describe on the following table:

DM address (HEX)	Addressing
0x0080 to 0x00FF	Direct (128 Bytes)
0x0100 to 0x0280	Indirect (384 Bytes)

In any condition the RAM is accessed in a single CPU cycle for write and read access.

Note:

For any information concerning the direct and indirect addressing, refer to the CR816-DL documentation.[1]

8. RESET CONTROLLER

The reset controller collects all different reset sources and initializes the needed peripheral registers. Refer to the individual peripheral register mapping tables to see which reset is initializing a specific register.

Some of the reset sources are maskable to prevent undesired system reinitialization.

After any reset the circuit will perform a power check and go to active mode. Then the reset status bits can be read to identify the reset source.

8.1 RESET SOURCES

Possible reset source signals are:

POR Power on reset, non-maskable

The fully internal POR cell will initialize the full circuit at power-up or if the supply voltge falls below

VPOR voltage.

PwrDown Power-Down mode

In power down all internal registers are initialized, the pad configuration however may be locked to the

last good state by setting **LckPwrCfg**=1 prior to Power-Down mode.

ResPA User defined Port A terminal reset function, maskable.

Any port A terminal may trigger reset.

ResWD Watchdog timer reaching 0, maskable.

Logic watchdog reset running on the internal 8kHz Oscillator.

ResBO Brown out reset at low regulated voltage, maskable.

ResBE CoolRISC bus error when trying to access non-valid instruction space, non-maskable.

ResGASP Entering Gasp modes (ISP, DoC), non-maskable.

This reset initializes the circuit prior to programming or degugging.

8.2 RESET SIGNALS

A combination of the above mentioned reset sources is used to initialize the different peripheral registers. These reset signals are *POR*, *PorLog*, *ResAna*, *ResSys*.

8.2.1 POR

A small logic remains active even in Power-Down mode to allow wake-up. This logic is initialized by **POR** signal. In the user data memory space this concerns the bit **LckPwrCfg**.

8.2.2 PORLOG

PorLog signal will reinitialize all reset flags and all pullup/pulldown configuration bits

PorLog = **Por** OR **PwrDown** (logical OR combination)

8.2.3 RESANA

ResAna signal will initialize all reset enable bits, the port A input and output enable bits, the port A debouncer selection bits, all trim bits and the analog configuration settings for the DC-DC and Opamp.

ResAna = Por OR PwrDown OR ResWD OR ResBE (logical OR combination)

8.2.4 RESSYS

ResSys signal initializes all remaining data memory registers, except the RAM which needs to be initialized by the user software if needed.

ResSys = Por OR PwrDown OR ResWD OR ResBE OR ResPA OR ResGasp OR ResBO

8.2.5 RESET FLAGS

All reset flags are in the Reset flag register: RegResFlg and placed as follows

The **ResFlgPA** bit is asserted by reset from PortA.

The **ResFigWD** bit is asserted by reset from Watchdog.

The **ResFlgBO** bit is asserted by reset from Brownout.

The **ResFigGasp** bit is asserted by reset from GASP.

The **ResFigBE** bit is asserted by reset from CoolRisc Bus-error detection.

Note:

To detect the Reset from Power-Down, the SW shall read the status of LckPwrCfg.

8.3 RESET REGISTERS

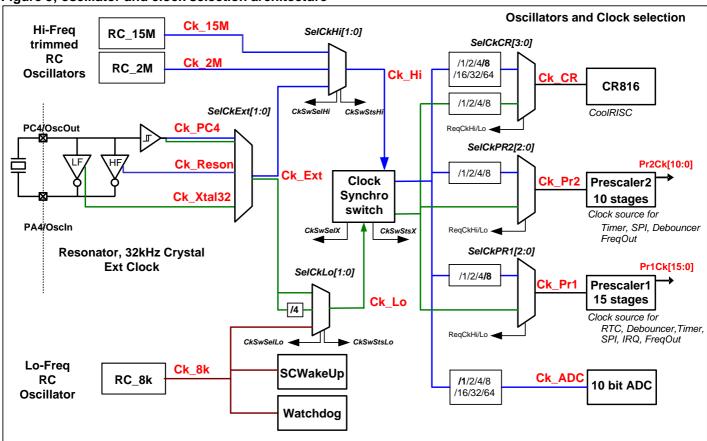
0x000	0x0000 RegSysCfg1		System Configuration - 1		
Bits	Name	Туре	ResVal	ResSrc	Description
7	SelSleep	RW	0	ResSys	Select Sleep mode on Halt
6	SelPwrDwn	RW	0	ResSys	Select Power-Down mode on Halt
4	EnBrownOut	RW	1	ResAna	Enable Brown Out
3:2	XtalCldStart	RW	'00'	ResSys	Select Xtal Osc. ColdStart length
1	StdByFastWkUp	RW	0	ResSys	Stand-by mode fast Wakeup
0	VSUPLow	RO	0		VSUP is Low - Tripler activated

0x000	0x0001		RegEnResPA		Enable Reset by PortA bits
Bits	Name	Type	ResVal	ResSrc	Description
7:0	EnResPA	RW	0x00	ResAna	Enable Reset by PortA bits

0x000	0x0006 RegResFlg		Reset Flags		
Bits	Name	Type	ResVal	ResSrc	Description
7	ResFlgPA	ResFlg	0	PorLog	Flag Reset from Port-A
6	ResFlgWD	ResFlg	0	PorLog	Flag Reset from WatchDog
5	ResFlgBO	ResFlg	0	PorLog	Flag Reset from Brown-Out
4	ResFlgGasp	ResFlg	0	PorLog	Flag Reset from GASP
3	ResFlgBE	ResFlg	0	PorLog	Flag Reset from CoolRISC Bus-Error
0	LckPwrCfg	RW	0	Por	Lock configurations to be kept in Power-Down mode

9. OSCILLATOR AND CLOCKING STRUCTURE

The circuit contains


- 3 independent fully internal RC osillcators,
- 15Mhz factory pretrimmed
- 2Mhz factory pretrimmed
- 8kHz
- Either one of these external clock sources
 - 32 KHz watch crystal oscillator (Crystal extern). Mapped on terminals PA4, PC4.
 - o 4 MHz Crystal or Resonator oscillator (Crystal or Resonator extern). Mapped on terminals PA4, PC4.
 - o External high or Low frequency clock input. Mapped on terminal PC4.

The oscillator source can be changed on the fly to always use the appropriate oscillator and clock setting according to the desired speed for i.e high speed calculation or low speed controlling, and hence optimise the power consumption.

The circuit will always start-up on the 2MHz RC Oscillator.

All circuit internal clocks are derived from the above mentioned oscillators. These clock sources may be predivided locally for optimum speed and power.

Figure 5; oscillator and clock selection architecture

The RC15Mhz **Ck_15M** and RC_2Mhz **Ck_2M** oscillators are factory pretrimmed, the RC_8kHz **Ck_8k** oscillator is the only clock source for the watchdog and the sleep counter reset function, but can also be used as a very low system clock. The RC_8kHz low frequency oscillator is not trimmed.

On the PA4 and PC4 an external 32 KHz Crystal **Ck_Xtal** or 4MHz Resonator/Crystal **Ck_Reson** oscillator can be connected or one may have an external clock input **Ck_PC4** on PC4. The selected output clock signal is **Ck_Ext**.

The **Ck_Hi** clock signal can come from the 15MHz RC, 2MHz RC, 4MHz Resontor/Crystal or the external high frequency clock input on PC4.

The **Ck_Lo** clock signal can come from the 32 KHz Crystal oscillator, divided 32 KHz, 8 kHz RC or the low frequency external clock on PC4; it is synchronized with the high frequency clock **Ck_Hi** if present. **Ck_Lo** clock synchronization

with *Ck_Hi* allows fully synchronous circuit operation. The synchronization is disabled if the *Ck_Hi* or divided *Ck_Hi* clock is not used by any periphery.

The CPU input clock Ck_CR is derived from either divided or undivided Ck_Hi or Ck_Lo.

The Prescaler 1 **Ck_Pr1** and Prescaler 2 **CkPr2** input clock is derived frm either divided or undivided **Ck_Hi** or direct **Ck_Lo**.

The ADC input clock Ck ADC is derived from either divided or undivided Ck Hi clock signal.

9.1 EXTERNAL CLOCK SELECTION

The External Component or Input clock source **Ck_Ext** is selected by register **RegClockCfg1** bits **SelCkExt** as follows:

SelCkExt	Input	Used PADs	Description		Frequency
00	-	-	No clock selection		none
01	Ck_Xtal	PA4, PC4	Xtal		32 KHz
10	Ck_Reson	PA4, PC4	Resonator		4 MHz
11	Ck_PC4	PC4,	External Clock input	Used for: Ck_Hi	Min: Ck_Lo * 8; Max: 15 MHz
		PCInpE[4]='1'		Used for: Ck_Lo	Max: Ck_Hi / 8; Min: 0 Hz

The default external clock source after system reset (*ResSys*) is "00" - None. The *Ck_Ext* clock signal is tied low. Before using an external clock input source one shall configure the necessary PA4 PC4 pads as analog inputs in case of external XTAL or Resonator, and as logic input with **PCInpEn**[4]=1 in case of external PC4 clock input. The external clock input on PC4 has min/max frequencies depending on its future use as *Ck_Hi* or *Ck_Lo* clock source; refer to the table above for the limits.

9.2 INTERNAL HIGH AND LOW FREQUENCY CLOCK SELECTION

The high **Ck_Hi** and low **Ck_Low** system frequencies can be selected independently but some restrictions for apply if connecting the external clock source.

The High Frequency clock *Ck_Hi* is selected according to the register **RegClockCfg1** bits **SelCkHi** as follows:

SelCkHi	Ck_Hi Source	Select signal
00	Ck_15M	SelRC15M
01	Ck_2M	SelRC2M
10	Ck_Ext	SelExt
11	Ck_2M	SelRC2M

The default Ck_Hi clock source after system reset (ResSys) is Ck_2M.

The Low Frequency clock **Ck_Lo** is selected according to the register **RegClockCfg1** bits **SelCkLo** as follows:

SelCkLo	Ck_Lo Source	Select signal
00	Ck_Ext	SelExt
01	Ck_Ext Divided by 4 (Ck_Ext/4)	SelExt
10	Ck_8k	SelRC8k
11	Ck_8k	SelRC8k

The default Ck Lo clock source after system reset (ResSys) shall be Ck 8k.

Note:

If **Ck_Hi** or **Ck_Lo** are switched from external clock (SelExt active) to Ck_15M, Ck_2M or Ck_8k the **SelCkExt** selection must not be changed until the status bits for the selected **Ck_Hi** external clock **RegCkSw1.CkSwStsHi** or **Ck_Lo** external clock **RegCkSw2.CkSwStsLo** has changed to '0'

9.2.1 EXTERNAL CLOCK SELECTION RESTRICTIONS

The external clock source selection for both high and low frequency clocks is very flexible, however some restrictions apply:

The external clock must not be connected to both *Ck_Hi* and *Ck_Lo* at the same time.

Allowed usage for external clock input on either high or low frequency domain:

External Clock source		Allowed configuration
SelCkExt	Source	
00	None	None
01	Xtal	Ck_Lo: (SelCkLo == 00 SelCkLo == 01) && SelCkHi !=10
		(Ck_Hi on RC Osc and Ck_Lo on either Ck_Ext or Ck_Ext/4)
10	Renonator	Ck_Hi: SelCkHi == 10 && (SelCkLo != 00 && SelCkLo != 01)
		(Ck_Hi on Ck_Ext and Ck_Lo on Ck_8k)
11	PC4	Ck_Lo: (SelCkLo == 00 SelCkLo == 01) && SelCkHi !=10
		(Ck_Hi on RC Osc and Ck_Lo on either Ck_Ext or Ck_Ext/4
		Ck_Hi: SelCkHi == 10 && (SelCkLo != 00 && SelCkLo != 01)
		(Ck_Hi on Ck_Ext and Ck_Lo on Ck_8k)

9.2.2 CPU CLOCK SELECTION

The CPU input clock **Ck_CR** is derived from divided or undivided **Ck_Hi** or **Ck_Lo** input clock. Below table is an overview of the different CPU clocking possibilities. The CPU clock divider selection is done in register **RegClockCfg2** bits **SelCkCR**.

SelCkCR	CoolRisc Clock
0000	Ck_Hi (divided by 1)
0001	Ck_Hi divided by 2
0010	Ck_Hi divided by 4
0011	Ck_Hi divided by 8 (default)
0100	Ck_Hi divided by 16
0101	Ck_Hi divided by 32
0110	Ck_Hi divided by 64
0111	Ck_Hi divided by 8
1000	Ck_Lo (divided by 1)
1001	Ck_Lo divided by 2
1010	Ck_Lo divided by 4
1011	Ck_Lo divided by 8
1100	Ck_Lo (divided by 1)
1101	Ck_Lo (divided by 1)
1110	Ck_Lo (divided by 1)
1111	Ck_Lo (divided by 1)

The default CR clock source after system reset (ResSys) is Ck_Hi divided by 8 (selection 0x3).

The CPU instruction execution cycle corresponds to half the *Ck_CR* clock frequency. 2 MHz input clock results in 1 MIPS.

ReqCkHi or ReqCkLo signals are asserted to the Hi- or Low frequency clock switches depending of the CR multiplexer selection.

9.2.3 PRESCALER1 CLOCK SELECTION

The Prescaler1 input clock *Ck_Pr1* is derived from divided or undivided *Ck_Hi* or *Ck_Lo* input clock. Below table is an overview of the different prescaler1 clocking possibilities. The prescaler clock divider selection is done in register **RegClockCfg3** bits **SelCkPr1**.

SelCkPr1	Prescaler1 Clock
000	Ck_Hi (divided by 1)
001	Ck_Hi divided by 2
010	Ck_Hi divided by 4
011	Ck_Hi divided by 8 default
100	Ck_Lo (divided by 1)
Others	Ck_Hi divided by 8

The default Prescaler1 clock source after system reset (**ResSys**) shall be **Ck_Hi** divided by 8 (selection 0x3). **ReqCkHi** or **ReqCkLo** signals are asserted to the Hi- or Low frequency clock switches depending of the Prescaler1 multiplexer selection.

9.2.4 PRESCALER 2 CLOCK SELECTION

The Prescaler2 input clock *Ck_Pr2* is derived from divided or undivided *Ck_Hi* or *Ck_Lo* input clock. Below table is an overview of the different prescaler1 clocking possibilities. The prescaler clock divider selection is done in register RegClockCfg3 bits SelCkPr2.

SelCkPr2	Prescaler2 Clock
000	Ck_Hi (divided by 1)
001	Ck_Hi divided by 2
010	Ck_Hi divided by 4
011	Ck_Hi divided by 8
100	Ck_Lo (divided by 1)
Others	Ck_Lo (divided by 1)
1xx	

The default Prescaler2 clock source after system reset (res_sys) shall be Ck_Lo divided by 1 (selection 0x4). **ReqCkHi** or **ReqCkLo** signals are asserted to the Hi- or Low frequency clock switches depending of the Prescaler2 multiplexer selection.

9.3 CLOCK CONTROL

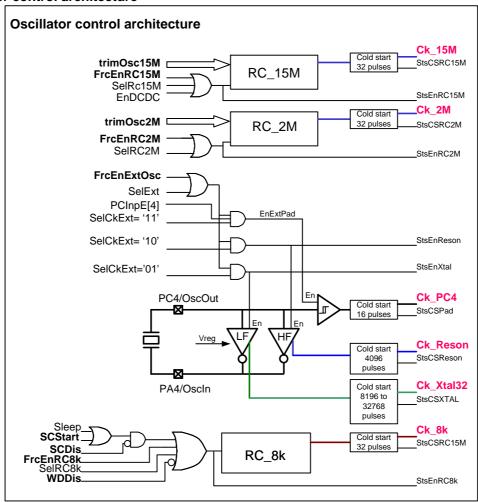
Ck_Hi and Ck_Lo are active only if needed.

- If *Ck_Hi* is selected by any of **SelCkCR**, **SelCkPr1**, **SelCkPr2**, its *ReqCkHi* signal becomes active and the oscillator as selected by the SelCkHi-multiplexer will be enabled, otherwise it shall be disabled. The oscillator is also enabled if forced by the corresponding FrcEn bit in register **RegClockCfg2**.
- If Ck_Lo is selected by any of SelCkCR, SelCkPr1, SelCkPr2, its ReqCkLo signal becomes active and the
 oscillator as selected by the SelCkLo-multiplexer will be enabled, otherwise it shall be disabled. The oscillator is
 also enabled if forced by the corresponding FrcEn bit in register RegClockCfg2.

As such the oscillators are only active if there output clock is needed for either *Ck_Hi* or *Ck_Lo*. Alternatively the user may always force-on any RC oscillator and one of the external clock sources (Xtal, resonator, PC4 ext clock)

Clock selection/request is provided as information which oscillator(s) are actually selected with its clock requested by a peripheral block. The request/selection bits **CkSwSelX**, **CkSwSelHi**, **CkSwSelLo** is high for the actual selected oscillator on the given clock switch. The coding is one-hot.

Clock status information is provided to show which oscillator(s) are actually active and outputting their clock on their clock switch. The status bits **CkSwStsX**, **CkSwStsHi**, **CkSwstsLo** is high for the actual active oscillator on the given clock switch. The coding is one-hot.


The clock selection and clock status signals are readable in register **RegCkSw1** and **RegCkSw2**. The coding is one-hot. A selected oscillator clock is only applied to the periphery if its selection and status bit match.

9.4 OSCILLATORS CONTROL

The oscillator control block assures that only the oscillators which are requested or which are forced-on are really active. The various status signals allow close monitoring of the clock switching and give essential information for power saving.

Figure 6; Oscillator control architecture

Oscillator availability is delayed by an individual oscillator ColdStart delay. Each disabled oscillator or external clock will go through the ColdStart phase when enabled.

Following delays apply:

Oscillator	ColdStart delay
RC 15 MHz	4 pulses
RC 2MHz	2 pulses
RC 8 kHz	32 pulses
Ext: from Pad	16 pulses
Ext: Resonator	4K pulses
Ext: Xtal	programmable by register bits
	XtalCldStart

The 32 KHz Xtal ColdStart delay is programmable by the register bits **XtalCldStart** as follows:

RegXtalCldStart	ColdStart delay				
00	32K cycles (default)				
01	24K cycles				
10	16K cycles				
11	8K cycles				

The ColdStart functionality is blocking the given clock propagation to the circuit.

The status of ColdStart function for each oscillator shall be readable by the register **RegStsCStart** bits **StsCSReson**, **StsCSXtal**, **StsCSPad**, **StsCSRC8k**, **StsCSRC2M**, **StsCSRC15M**.

The oscillator Force-On functionality can be used to avoid recurrent coldstart delays on fast clock switching.

An Oscillator is enabled if its clock is requested by either of the **SelCkCr**, **SelCkPr1**, **SelCkPr2** clock selection bits or forced-on by register **RegClockCfg2** bits **FrcEnXXX** as follows:

Oscillator	Condition	Status bit
RC15 MHz	SelRC15M FrcEnRC15M EnDC-DC	StsEnRC15M
RC2 MHz	SeIRC2M FrcEnRC2M	StsEnRC2M
Xtal	(SelExt FrcEnExt) && SelCkExt="01"	StsEnXtal
Resonator	(SelExt FrcEnExt) && SelCkExt="10"	StsEnReson

The oscillator enable signals are readable by the register RegStsEnOsc bits StsEnReson, StsEnXtal, StsEnRC8k, StsEnRC2M, StsEnRC15M.

An External clock Source from pad PC4 is enabled if selected or forced-on by register **RegClockCfg2 bit FrcEnExt**, its status is read on **StsCSPad**:

StsCSPad = (SelExt || FrcEnExt) && SelCkExt="11"

PCInpE[4] must be high to allow PC4 clock input

The RC 15 MHz oscillator is always automatically enabled if the DC-DC converter is switched on (register **RegDC-DCfg** bit **EnDC-DC**).

The oscillators (except RC_8K) and the external clock sources are automatically disabled in Sleep mode. This has priority over Select and Force-On functionality.

The oscillators and the external clock sources are automatically disabled by power-check functionality. This has priority over Select and Force-On functionality.

The RC 8 kHz oscillator shall be enabled

- in Sleep mode with active sleepcounter function
- while the watchdog is enabled,
- while requested by any of the SelCkCR, SelCkPr1 and SelCkPr2 clock selection
- and when forced-on.

The status bit of the RC_8k is readable in register RegStsEnOsc bit StsEnRC8k StsEnRC8k = FrcEnRC8k || SelRC8k || ((Sleep || SCStart) && !SCDis) || !WDDis

The RC_8kHz oscillator can only be disabled at least 300us after its coldstart. (RegStsCStart.StsCSRC8k)

9.5 CLOCK CONTROL REGISTERS

0x000	0x0000		g1		System Configuration - 1
Bits	Name	Туре	Type ResVal ResSrc		Description
7	SelSleep	RW	0	ResSys	Select Sleep mode on Halt
6	SelPwrDwn	RW	0	ResSys	Select Power-Down mode on Halt
4	EnBrownOut	RW	1	ResAna	Enable Brown Out
3:2	XtalCldStart	RW	'00'	ResSys	Select Xtal Osc. ColdStart length
1	StdByFastWkUp	RW	0	ResSys	Stand-by mode fast Wakeup
0	VSUPLow	RO	0		VSUP is Low - Tripler activated

0x0003 RegClo		RegClock	Cfg1		Clock Configuration - 1		
Bits	Name	Type ResVal ResSrc		ResSrc	Description		
7:6	SelCkExt	RW_Res	'00'	ResSys	Select External Component/Input clock source		
5:4	SelCkHi	RW_Res	'01'	ResSys	Select High freq. Clock source		
3:2	SelCkLo	RW_Res	'10'	ResSys	Select Low freq. Clock source		
1	-	NI	-	-	Not implemented		
0	FrcFastRead	RW	0	ResSys	Force NVM Fast Read		

0x000	0x0004 RegClockCfg2		Clock Configuration - 2		
Bits	Name	ame Type ResVal ResSrc		ResSrc	Description
7	FrcEnRC15M	RW	0	ResSys	Force 15 MHz RC Oscillator ON
6	FrcEnRC2M	RW	0	ResSys	Force 2 MHz RC Oscillator ON
5	FrcEnRC8k	RW	0	ResSys	Force 8 kHz RC Oscillator ON
4	FrcEnExt	RW	0	ResSys	Force selected (SelCkExt) External
					Component/Input clock source ON
3:0	SelCkCR	RW_Res	0x3	ResSys	Select CoolRisc/CPU Clock source

0x0005 RegClockCfg3			Clock Configuration - 3			
Bits	Name	Type ResVal ResSrc		ResSrc	Description	
7:5	SelCkPr1	RW_Res	'011'	ResSys	Select Prescaler1 Clock source	
4:2	SelCkPr2	RW_Res	'100'	ResSys	Select Prescaler2 Clock source	
1:0	-	NI	-	1	-	

0x02A5 RegSts0		RegStsCS	Start		Ostcillators ColdStart Status		
Bits	Name	Type ResVal ResSrc		ResSrc	Description		
7:6	-	NI	-	-	-		
5	StsCSReson	RO	1	ResSys	ColdStart Status of (4 MHz) Resonator Oscillator		
4	StsCSXtal	RO	1	ResSys	ColdStart Status of (32K Hz) Xtal Oscillator		
3	StsCSPad	RO	1	ResSys	ColdStart Status of External Pad-Clock		
2	StsCSRC8k	RO	0	ResSys	ColdStart Status of 8 kHz RC Oscillator		
1	StsCSRC2M	RO	0	ResSys	ColdStart Status of 2 MHz RC Oscillator		
0	StsCSRC15M	RO	1	ResSys	ColdStart Status of 15 MHz RC Oscillator		

0x02/	0x02A6		nOsc		Ostcillators Enable Status		
Bits	s Name Type ResVal ResSrc		Description				
7:5	-	NI	-	-	Not implemented		
4	StsEnReson	RO	0	ResSys	Enabled Status/State of (4 MHz) Resonator		
					Oscillator		
3	StsEnXtal	RO	0	ResSys	Enabled Status/State of (32K Hz) Xtal Oscillator		
2	StsEnRC8k	RO	1	ResSys	Enabled Status/State of 8 kHz RC Oscillator		
1	StsEnRC2M	RO	1	ResSys	Enabled Status/State of 2 MHz RC Oscillator		
0	StsEnRC15M	RO	0	ResSys	Enabled Status/State of 15 MHz RC Oscillator		

0x02/	0x02A7		Sw1		Clock switches Selector/Request and current Status - 1				
Bits	Name	Туре	ResVal	ResSrc	Description				
7	CkSwSelX	RO	0	ResSys	Ck_SW Clock (Ck-Hi/Ck-Lo) Sync. clock switch				
					Selector/Request Status				
					'1' - CK_Lo, '0' - CK_Hi				
6	CkSwStsX	RO	0	ResSys	Ck_SW Clock (Ck-Hi/Ck-Lo) Sync. clock switch current				
					Status				
					'1' - CK_Lo, '0' - CK_Hi				
5:3	CkSwSelHi	RO	'010'	ResSys	Ck-Hi Clock switch (one-hot) Selector/Request Status				
					bit0 - Ck_15M, Bit1 - Ck_2M, bit2 - Ck_Ext				
2:0	CkSwStsHi	RO	'010'	ResSys	Ck-Hi Clock switch (one-hot) current Status				
1					bit0 - Ck_15M, Bit1 - Ck_2M, bit2 - Ck_Ext				

0x02A8 RegCkSw2			Clock switches Selector/Request and current Status - 2				
Bits	Name	Туре	e ResVal ResSrc		Description		
7:6	-	NI	-	-	Not implemented		
5:3	CkSwSelLo	RO	'100'	ResSys	Ck-Lo Clock switch (one-hot) Selector/Request Status		
					bit0 - Ck_Ext, Bit1 - Ck_Ext/4, bit2 - Ck_8k		
2:0	CkSwStsLo	RO	'100'	ResSys	Ck-Lo Clock switch (one-hot) current Status		
					bit0 - Ck_Ext, Bit1 - Ck_Ext/4, bit2 - Ck_8k		

10. PRESCALER1

The prescaler1 is a 15 stage clock divider. It is typically used to deliver the input clocks to the digital peripherals (timers, SPI, etc..). Its last stage output is on 1Hz (at 32768Hz input clock) and therefore most often used to construct a RTC (Real Time Clock) system.

It can also be used as a free running counter by reading the current status of **Pr1Ck0**(MSB) to **Pr1Ck7**(LSB) in register **RegPresc1Val.**

10.1 PRESCALER1 CLOCK SELECTION

The Prescaler1 input clock Ck_Pr1 is derived from divided or undivided Ck_Hi or Ck_Lo input clock. Below table is an overview of the different prescaler1 clocking possibilities. The prescaler clock divider selection is done in register RegClockCfg3 bits SelCkPr1.

SelCkPr1	Prescaler1 Clock
000	Ck_Hi (divided by 1)
001	Ck_Hi divided by 2
010	Ck_Hi divided by 4
011	Ck_Hi divided by 8 (default)
100	Ck_Lo (divided by 1)
Others	Ck_Hi divided by 8

The default Prescaler1 clock source after system reset (ResSys) shall be Ck_Hi divided by 8 (selection 0x3).

It is possible to run the 15 stage precaler1 on 13 stages only. This is typically used when connecting the RC_8K oscillator as the prescaler1 clock source and allow to keep the nominal prescaler output frequencies as if there would be an 32kHz Xtal oscillator connected (prescaler at 15 stages). The prescaler1 length selection is done in register **RegPrescCfg** bit **Presc1Len** ('0'= 15 stages, '1'=13 stages).

The Signals *Pr1Ck14* and *Pr1Ck13* are thus not influenced by the shortening.

Assuming a Prescaler1 with N stages, then the signal **Pr1Ck**[N] is the input of the first stage, **Pr1Ck**[N-1] is the output of the first stage (input divided by 2) and **Pr1Ck0** is the output of the last stage (the lowest frequency). This leads to following clock source name definitions.

Prescaler1	Clock Name	F	Presc1Len = '0'			Presc1Le	en = '1'
stage		Divisi	Division by		Division by		Fout
Prescaler source:	Pr1Ck15	1	2^0	32K	1	2^0	8K
Stage 1	Pr1Ck14	2	2^1	16K	2	2^1	4K
Stage 2	Pr1Ck13	4	2^2	8K	4	2^2	2K
Stage 3	Pr1Ck12	8	2^3	4K	2	2^1	4K
Stage 4	Pr1Ck11	16	2^4	2K	4	2^2	2K
Stage 5	Pr1Ck10	32	2^5	1K	8	2^3	1K
Stage 6	Pr1Ck9	64	2^6	512	16	2^4	512
Stage 7	Pr1Ck8	128	2^7	256	32	2^5	256
Stage 8	Pr1Ck7	256	2^8	128	64	2^6	128
Stage 9	Pr1Ck6	512	2^9	64	128	2^7	64
Stage 10	Pr1Ck5	1K	2^10	32	256	2^8	32
Stage 11	Pr1Ck4	2K	2^11	16	512	2^9	16
Stage 12	Pr1Ck3	4K	2^12	8	1K	2^10	8
Stage 13	Pr1Ck2	8K	2^13	4	2K	2^11	4
Stage 14	Pr1Ck1	16K	2^14	2	4K	2^12	2
Stage 15	Pr1Ck0	32K	2^15	1	8K	2^13	1

The frequencies Fout given in this table are based on 32 KHz clock selection as a prescaler1 input source.

10.2 PRESCALER1 RESET

Writing '1' to the bit **Presc1CIr** in register **RegPrescCfg** sets all stages to '1' and counting restarts.

10.2.1.1 PRESCALER1 INTERRUPT GENERATION

The prescaler1 generates 2 interrupt signals

• IntPr1Ck0 interrupt signal is generated on the stage 15 overrun (rising Pr1Ck0 edge)

• IntPr1Ck5/3 interrupt signal is generated on the stage 10 or stage12 overrun

(rising Pr1Ck3 or Pr1Ck5 edge).

The selection is done in register PrescCfg bit Presc1SelIntck5/3 as follows:

Presc1SelIntck5/3	Int. Freq. (based on 32KHz)	Pr1-Ck
0 (Default)	8 Hz	Pr1Ck3
1	32 Hz	Pr1Ck5

The frequencies given in this table are based on 32 KHz clock selection as a prescaler1 input source.

10.3 PRESCALER REGISTERS

0x0007		RegPres	cCfg		Prescaler-1/2 Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	Presc1Clr	OS	0		Prescaler-1 Clear counter
6	Presc1Len	RW	0	ResSys	Prescaler-1 Length
5	Presc1SelIntck5/3	RW	0	ResSys	Select Prescaler-1 irq-B source: 0-8Hz, 1-32Hz
4	Presc2Clr	OS	0		Prescaler-2 Clear counter
3:0	-	NI	-	-	Not implemented

0x000)8	RegPresc*	RegPresc1Val		Prescaler-1 Value (MSB)
Bits	Name	Type	ResVal	ResSrc	Description
7:0	Presc1Val	RO	0xFF	ResSys	Prescaler-1 Value (MSB), Pr1Ck0 to Pr1Ck7 status

11. PRESCALER2

The prescaler2 is a 10 stage clock divider. It is typically used to deliver the input clocks to the digital peripherals (timers, SPI, etc. It can also be used as a free running counter by reading the current status of *Pr2Ck0*(MSB) to *Pr2Ck7*(LSB) in register **RegPresc2Val.**

11.1 PRESCALER2 CLOCK SELECTION

The Prescaler2 input clock Ck_Pr2 is derived from divided or undivided Ck_Hi or Ck_Lo input clock. Below table is an overview of the different prescaler1 clocking possibilities. The prescaler clock divider selection is done in register RegClockCfg3 bits SelCkPr2.

SelCkPr2	Prescaler2 Clock
000	Ck_Hi (divided by 1)
001	Ck_Hi divided by 2
010	Ck_Hi divided by 4
011	Ck_Hi divided by 8
100	Ck_Lo (divided by 1)
Others	Ck_Lo (divided by 1)

The default Prescaler-2 clock source after system reset (res_sys) shall be **Ck_Lo** divided by 1 (selection 0x4).

Assuming a Prescaler2 with N stages, then the signal **Pr2ck**[N] is the input of the first stage, **Pr2Ck**[N-1] is the output of the first stage (input divided by 2) and **Pr2Ck0** is the output of the last stage (the lowest frequency). This leads to following clock source name definitions.

Prescaler2 stage	Clock Name	Divis	sion by	Fout
Prescaler source:	Pr2Ck10	1	2^0	2 M
Stage 1	Pr2Ck9	2	2^1	1 M
Stage 2	Pr2Ck8	4	2^2	500 k
Stage 3	Pr2Ck7	8	2^3	250 k
Stage 4	Pr2Ck6	16	2^4	125 k
Stage 5	Pr2Ck5	32	2^5	62500
Stage 6	Pr2Ck4	64	2^6	31250
Stage 7	Pr2Ck3	128	2^7	15625
Stage 8	Pr2Ck2	256	2^8	7812.5
Stage 9	Pr2Ck1	512	2^9	3906.25
Stage 10	Pr2Ck0	1K	2^10	1953.125

The frequencies Fout given in this table are based on 32 KHz clock selection as a prescaler2 input source.

11.2 PRESCALER2 RESET

Writing '1' to the bit Presc2CIr in register RegPrescCfg sets all stages to '1' and counting restarts.

11.3 PRESCALER2 REGISTERS

0x0007		RegPres	Cfg		Prescaler-1/2 Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	Presc1Clr	OS	0		Prescaler-1 Clear counter
6	Presc1Len	RW	0	ResSys	Prescaler-1 Length
5	Presc1SelIntck5/3	RW	0	ResSys	Select Prescaler-1 irq-B source: 0-8Hz, 1-32Hz
4	Presc2Clr	OS	0		Prescaler-2 Clear counter
3:0	-	NI	-	-	Not implemented

0x000)9	RegPresc2Val			Prescaler-2 Value (MSB)
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	Presc2Val	RO	0xFF	ResSys	Prescaler-2 Value (MSB), Pr2Ck0 to Pr2Ck7 status

12. INTERRUPT AND EVENT CONTROLLER

12.1 INTERRUPTS GENERAL

12.1.1 BASIC FEATURES

The circuit handles 24 independent Interrupt sources grouped into 3 priority levels.

• Highest Priority : Level 0 : Prescaler1, PmMiss, GASP, ADC, Timer, Ports

Medium Priority : Level 1 : SPI, Prescaler1, OpAmp, Timer, Ports
 Lowest Priority : Level 2 : Timer, Ports, Sleep counter, VLD

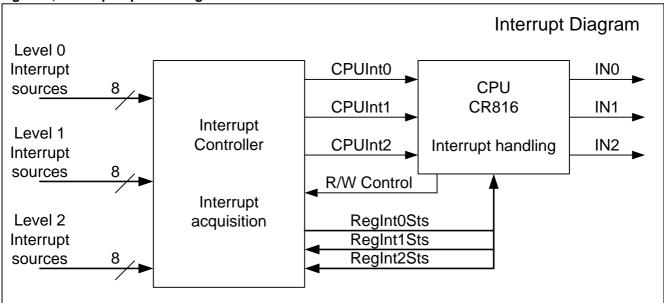
As such the circuit contains

- 13 external Interrupts (Ports, SPI, OpAmp, VLD, GASP)
- 12 internal Interrupts (Prescaler, DoC, Timer, SPI, PmMiss, Sleep Counter)

Interrupt from SPI and Timer may be initialized by either external or internal actions (i.e. timer running on external clock)

Interrupts force a CALL to a fixed interrupt vector, save the program counter (PC) onto the hardware stack and reset the general interrupt bit (**GIE**). If the CPU was in StandBy mode prior to Interrupt then it will come back in active mode. Each priority level has its own interrupt vector.

- Level 1 → sets bit IN1 in CoolRISC status register → Program memory address 1 → Call Vector 1
- Level 2 → sets bit *IN2* in CoolRISC status register → Program memory address 2 → Call Vector 2
- Level 0 → sets bit *IN0* in CoolRISC status register → Program memory address 3 → Call Vector 0


The **GIE** bit is restored when returning from interrupt with the RETI instruction. The RET instruction does not reinstall the GIE. Nested interrupts are possible by re-enabling the GIE bit within the interrupt routine.

Functions such as interrupt Pre- or Post-masking, enabling and clearing are available on different levels in the interrupt structure. At power up or after any reset all interrupt inputs are masked and the GIE is cleared.

The Interrupt handling is split into 2 parts.

- One part deals with the acquisition, masking and clearing of the interrupts outside of the CPU.
 - → Interrupt acquisition, IRQ Controller
- The 2nd part covers all aspects of priority and interrupts enabling inside the CoolRISC core.
 - → CPU interrupts handling

Figure 7, Interrupt top level diagram

12.2 INTERRUPT ACQUISITION

A positive edge on any of the unmasked interrupt source signals will set the corresponding interrupt register bit and activate the mapped CPU interrupt input. (I.e. Timer3 interrupt *IntTim3* will set bit *Int1StsTim3* in register **RegInt1Sts** and activate the CPUInt1 interrupt input if mask bit *Int1MskTim3* is '1' [non-masked]).

The 3 priority branches for interrupt acquisition are totally independent of each other, masking and selective clear of interrupts on one interrupt vector input does not modify the others.

All Interrupts inputs are available in active and standby mode.

Table 1. Interrupts signal sources and destination

Interrupt	Int			Sleep wake-
sources	vector	Mapping	remark	up
		Int0StsPort0	PA0 or PC0, positive and/or negative edge	X (PA)
IntTim1		Int0StsTim1	Timer1 Input capture, Compare value, Compare Full	
IntPr1Ck0		Int0StsPrCk0	Prescaler1 1Hz (Pr1Ck0)	
IntADC	0	Int0StsADC	ADC conversion finished	
IntDoCDM	U	Int0StsDoCDM	DoC data memory address match	
IntDoCPM		Int0StsDoCPM	DoC program memory address match	
IntGASP		Int0StsGASP	GASP data reception with sign='1'	Х
IntPmMiss		Int0StsPmMiss	Program memory, wait introduction	
IntPort2		Int1StsPort2	PA2 or PC2, positive and/or negative edge	X (PA)
IntPort1		Int1StsPort2	PA1 or PC1, positive and/or negative edge	X (PA)
IntTim2		Int1StsTim2	Timer2, Input capture, Compare value, Compare Full	
IntTim3	1	Int1StsTim3	Timer3, Input capture, Compare value, Compare Full	
IntOpAmp 1		Int1StsOpAmp	Comparator; falling and/or rising output change	Х
IntPr1Ck5/3			Prescaler 1, 8Hz or 32Hz (falling edge)	
IntSPIStop		Int1StsSPIStop	SPI, Stop transmission 1 byte	
IntSPIStart		Int1StsSPIStart	SPI, Start transmission 1byte	
IntVLD		Int2StsVLD	Voltage level detector; input low	X
IntSlpCnt		Int2StsSlpCnt	Sleep counter wakeup timeout	X
IntPort7		Int2StsPort7	PA7 or PC7, positive and/or negative edge	X (PA)
IntPort6	2	Int2StsPort6	PA6 or PC6, positive and/or negative edge	X (PA)
IntPort5Int2StsPort5IntPort4Int2StsPort4		Int2StsPort5	PA5 or PC5, positive and/or negative edge	X (PA)
		Int2StsPort4	PA4 or PC4, positive and/or negative edge	X (PA)
IntPort3		Int2StsPort3	PA3 or PC3, positive and/or negative edge	X (PA)
IntTim4		Int2StsTim4	Timer4, Input capture, Compare value, Compare Full	

The following interrupt sources can wake-up the device from the Sleep mode if enabled by appropriate interrupt masks:

Table 2. Wake-Up Interrupts

Interrupt Source	Interrupt Status
PortA; regardless of RegintPortSrc	IntXStsPort7 to IntXStsPort0
Sleep counter	Int2StsSlpCnt
SVLD	Int2StsVLD
OpAmp	Int1StsOpAmp
GASP	Int0StsGASP

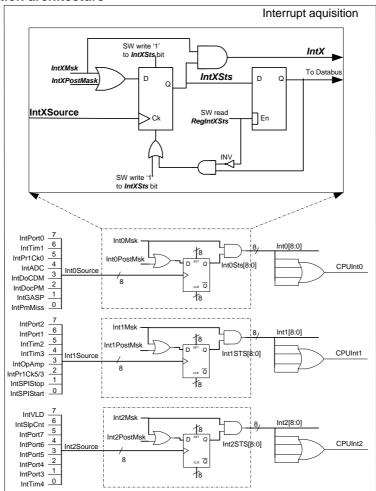
Direct (non-debounced) port A interrupts are, used for the wake-up, totaly independent of the debouncer settings.

12.3 INTERRUPTS FROM IO PORTS

The register **RegIntPortSrc** selects the port interrupt source *IntPort* coming from port A or port C in Active and StandBy modes. In Sleep mode, the port A is always selected independent of **RegIntPortSrc** settings.

- If **RegintPortSrc**[X] = '0' then **IntPort**[X] source shall be **IntPA**[X] otherwise it is **IntPC**[X].
- The default value of **RegIntPortSrc** is 0x00, i.e. **IntPA**[X] is selected.

12.4 INTERRUPT ACQUISITION MASKING.


At start up or after any reset all interrupt sources are masked (mask bits are '0'). To activate a specific interrupt source input the corresponding mask bit must be set '1'. Masking does not clear an existing interrupt but will prevent future interrupts on the same input. Refer to Figure 8, Interrupt acquisition architecture.

12.4.1 PRE AND POSTMASKING OF INTERRUPTS

One pair of registers for each level of priority **RegIntXMsk** and **RegIntXPostMsk** control the interrupt generation for CPU and catch an incoming request into the status registers **RegIntXSts** as follows:

- If RegIntXMsk[Y] ='1' then the appropriate CPU interrupt line IntX is asserted and interrupt is caught in the status register RegIntXSts[Y].
- If RegIntXMsk[Y] ='0' then the appropriate CPU interrupt line IntX is NOT asserted. The interrupt request is caught in the status register RegIntXSts[Y] only if RegIntXPostMsk[Y] ='1'.
- If RegIntXMsk[Y] = '0' then the appropriate CPU interrupt line IntX is NOT asserted. The interrupt request is NOT caught in the status register RegIntXSts[Y] if RegIntXPostMsk[Y] = '0'.

Figure 8, Interrupt acquisition architecture

12.5 INTERRUPT ACQUISITION CLEARING

A pending interrupt can be cleared in 3 ways

- Reading the interrupt registers RegInt0Sts, RegInt1Sts and RegInt2Sts will automatically clear all stored interrupts
 which were set prior to the read in the corresponding register. This read is normally done inside the interrupt
 subroutine to determine the source of the interrupt.
- Each interrupt request status bit can be individually cleared (set '0') by writing '0' to the corresponding **RegInt0Sts**, **RegInt1Sts** and **RegInt2Sts** register bit. Software clearing of the interrupt status bit has priority over an incoming interrupt.
- At power up or after any reset all interrupt registers are reset.

12.5.1 SOFTWARE INTERRUPT ACQUISITION SET

Each interrupt request status bit can be individually set (set '1') by writing '1' to the corresponding **RegInt0Sts**, **RegInt1Sts** and **RegInt2Sts** register bit. Write '1' has the highest priority on the status bit.

12.6 INTERRUPT REGISTERS

0x0061		RegInt0St	RegInt0Sts		Interrupt level-0 Status
Bits	Name	Type	ResVal	ResSrc	Description
7	Int0StsPort(0)	RW-INT	0	ResSys	Interrupt level-0 Status - Port(0)
6	Int0StsTim1	RW-INT	0	ResSys	Interrupt level-0 Status - Timer-1
5	Int0StsPr1Ck0	RW-INT	0	ResSys	Interrupt level-0 Status - Prescaler1 Ck0 (1Hz)
4	Int0StsADC	RW-INT	0	ResSys	Interrupt level-0 Status - ADC
3	Int0StsDoCDM	RW-INT	0	ResSys	Interrupt level-0 Status - DoC DM
2	Int0StsDoCPM	RW-INT	0	ResSys	Interrupt level-0 Status - DoC PM
1	Int0StsGASP	RW-INT	0	ResSys	Interrupt level-0 Status - GASP
0	Int0StsPmMiss	RW-INT	0	ResSys	Interrupt level-0 Status - PM_Miss

0x0062		RegInt1St	RegInt1Sts		Interrupt level-1 Status
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int1StsPort(2)	RW-INT	0	ResSys	Interrupt level-1 Status - Port(2)
6	Int1StsPort(1)	RW-INT	0	ResSys	Interrupt level-1 Status - Port(1)
5	Int1StsTim2	RW-INT	0	ResSys	Interrupt level-1 Status - Timer-2
4	Int1StsTim3	RW-INT	0	ResSys	Interrupt level-1 Status - Timer-3
3	Int1StsOpAmp	RW-INT	0	ResSys	Interrupt level-1 Status - OpAmp
2	Int1StsPr1Ck5/3	RW-INT	0	ResSys	Interrupt level-1 Status – Prescaler1 Ck5 or Ck3
1	Int1StsSPIStop	RW-INT	0	ResSys	Interrupt level-1 Status - SPI_Stop
0	Int1StsSPIStart	RW-INT	0	ResSys	Interrupt level-1 Status - SPI Start

0x006	63	RegInt2Sts			Interrupt level-2 Status
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int2StsVLD	RW-INT	0	ResSys	Interrupt level-2 Status - VLD
6	Int2StsSlpCnt	RW-INT	0	ResSys	Interrupt level-2 Status - Sleep Counter
5	Int2StsPort(7)	RW-INT	0	ResSys	Interrupt level-2 Status - Port(7)
4	Int2StsPort(6)	RW-INT	0	ResSys	Interrupt level-2 Status - Port(6)
3	Int2StsPort(5)	RW-INT	0	ResSys	Interrupt level-2 Status - Port(5)
2	Int2StsPort(4)	RW-INT	0	ResSys	Interrupt level-2 Status - Port(4)
1	Int2StsPort(3)	RW-INT	0	ResSys	Interrupt level-2 Status - Port(3)
0	Int2StsTim4	RW-INT	0	ResSys	Interrupt level-2 Status - Timer-4

0x006	0x0064		Msk		Interrupt level-0 Mask
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int0MskPort(0)	RW	0	ResSys	Interrupt level-0 Mask - Port(0)
6	Int0MskTim1	RW	0	ResSys	Interrupt level-0 Mask - Timer-1
5	Int0MskPr1Ck0	RW	0	ResSys	Interrupt level-0 Mask - Prescaler1 1Hz
4	Int0MskADC	RW	0	ResSys	Interrupt level-0 Mask - ADC
3	Int0MskDoCDM	RW	0	ResSys	Interrupt level-0 Mask - DoC DM
2	Int0MskDoCPM	RW	0	ResSys	Interrupt level-0 Mask - DoC PM
1	Int0MskGASP	RW	0	ResSys	Interrupt level-0 Mask - GASP
0	Int0MskPmMiss	RW	0	ResSys	Interrupt level-0 Mask - PM_Miss

0x00	0x0065		V Isk		Interrupt level-1 Mask
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int1MskPort(2)	RW	0	ResSys	Interrupt level-1 Mask - Port(2)
6	Int1MskPort(1)	RW	0	ResSys	Interrupt level-1 Mask - Port(1)
5	Int1MskTim2	RW	0	ResSys	Interrupt level-1 Mask - Timer-2
4	Int1MskTim3	RW	0	ResSys	Interrupt level-1 Mask - Timer-3
3	Int1MskOpAmp	RW	0	ResSys	Interrupt level-1 Mask - OpAmp
2	Int1MskPr1Ck5/3	RW	0	ResSys	Interrupt level-1 Mask - Prescaler1 Ck5 or Ck3
1	Int1MskSPIStop	RW	0	ResSys	Interrupt level-1 Mask - SPI_Stop
0	Int1MskSPIStart	RW	0	ResSys	Interrupt level-1 Mask - SPI_Start

0x00	0x0066		/lsk		Interrupt level-2 Mask
Bits	Name	Type	ResVal	ResSrc	Description
7	Int2MskVLD	RW	0	ResSys	Interrupt level-2 Mask - VLD
6	Int2MskSlpCnt	RW	0	ResSys	Interrupt level-2 Mask - Sleep Counter
5	Int2MskPort(7)	RW	0	ResSys	Interrupt level-2 Mask - Port(7)
4	Int2MskPort(6)	RW	0	ResSys	Interrupt level-2 Mask - Port(6)
3	Int2MskPort(5)	RW	0	ResSys	Interrupt level-2 Mask - Port(5)
2	Int2MskPort(4)	RW	0	ResSys	Interrupt level-2 Mask - Port(4)
1	Int2MskPort(3)	RW	0	ResSys	Interrupt level-2 Mask - Port(3)
0	Int2MskTim4	RW	0	ResSys	Interrupt level-2 Mask - Timer-4

0x0067		RegInt0PostMsk			Interrupt level-0 Post_Mask
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int0PostMskPort(0)	RW	0	ResSys	Interrupt level-0 Post_Mask - Port(0)
6	Int0PostMskTim1	RW	0	ResSys	Interrupt level-0 Post_Mask - Timer-1
5	Int0PostMskPr1Ck0	RW	0	ResSys	Interrupt level-0 Post_Mask - Prescaler1 1Hz
4	Int0PostMskADC	RW	0	ResSys	Interrupt level-0 Post_Mask - ADC
3	Int0PostMskDoCDM	RW	0	ResSys	Interrupt level-0 Post_Mask - DoC DM
2	Int0PostMskDoCPM	RW	0	ResSys	Interrupt level-0 Post_Mask - DoC PM
1	Int0PostMskGASP	RW	0	ResSys	Interrupt level-0 Post_Mask - GASP
0	Int0PostMskPmMiss	RW	0	ResSys	Interrupt level-0 Post_Mask - PM_Miss

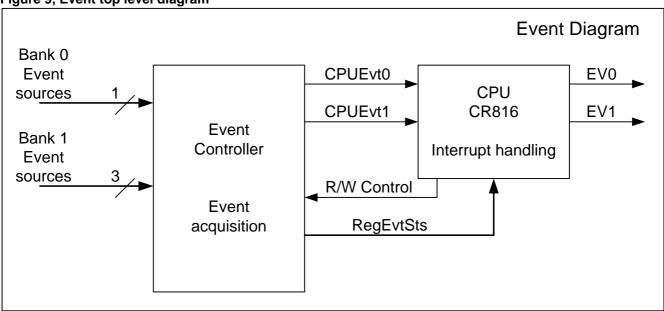
0x006	0x0068		ostMsk		Interrupt level-1 Post_Mask
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int1PostMskPort(2)	RW	0	ResSys	Interrupt level-1 Post_Mask - Port(2)
6	Int1PostMskPort(1)	RW	0	ResSys	Interrupt level-1 Post_Mask - Port(1)
5	Int1PostMskTim2	RW	0	ResSys	Interrupt level-1 Post_Mask - Timer-2
4	Int1PostMskTim3	RW	0	ResSys	Interrupt level-1 Post_Mask - Timer-3
3	Int1PostMskOpAmp	RW	0	ResSys	Interrupt level-1 Post_Mask - OpAmp
2	Int1PostMskPr1Ck5/3	RW	0	ResSys	Interrupt level-1 Post_Mask - Prescaler1 Ck5 or Ck3
1	Int1PostMskSPIStop	RW	0	ResSys	Interrupt level-1 Post_Mask - SPI_Stop
0	Int1PostMskSPIStart	RW	0	ResSys	Interrupt level-1 Post_Mask - SPI_Start

0x0069		RegInt2PostMsk			Interrupt level-2 Post_Mask
Bits	Name	Туре	ResVal	ResSrc	Description
7	Int2PostMskVLD	RW	0	ResSys	Interrupt level-2 Post_Mask - VLD
6	Int2PostMskSlpCnt	RW	0	ResSys	Interrupt level-2 Post_Mask - Sleep Counter
5	Int2PostMskPort(7)	RW	0	ResSys	Interrupt level-2 Post_Mask - Port(7)
4	Int2PostMskPort(6)	RW	0	ResSys	Interrupt level-2 Post_Mask - Port(6)
3	Int2PostMskPort(5)	RW	0	ResSys	Interrupt level-2 Post_Mask - Port(5)
2	Int2PostMskPort(4)	RW	0	ResSys	Interrupt level-2 Post_Mask - Port(4)
1	Int2PostMskPort(3)	RW	0	ResSys	Interrupt level-2 Post_Mask - Port(3)
0	Int2PostMskTim4	RW	0	ResSys	Interrupt level-2 Post_Mask - Timer-4

0x006	0x006A		tSrc		Port Interrupt source selector: 0-PortA, 1-PortC
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	IntPortSrc	RW	0x00	ResSys	Port Interrupt source selector: 0-PortA, 1-PortC

12.7 EVENT GENERAL

12.7.1 BASIC FEATURES


Events are most commonly used to restart the processor from the StandBy mode without jumping to the interrupt vector. Events can also be combined with the JEV instruction (Jump on Event) or been used for wake-up from Sleep mode.

The circuit handles 4 independent event sources grouped into 2 event sources, both of same priority

Bank 0 Source : EV0: GASP

Bank 1 Source : EV1: ADC, SPI, Sleep Counter

Figure 9, Event top level diagram

12.8 EVENT ACQUISITION

A positive edge on any of the unmasked event source signals will set the corresponding event status bit and activate the mapped CPU event input. (I.e. ADC event **EvtADC** will set bit **Evt1StsADC** in register **RegEvtSts** and activate the CPUEvt1 event input if mask bit **Evt1MskADC** is '1' [non-masked]).

The 2 branches for event acquisition are totally independent of each other, masking and selective clear of events on one event status input does not modify the others.

Table 3. Event signal sources and destination

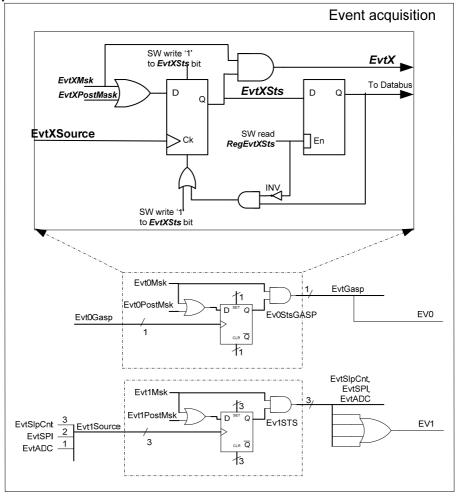
Event sources	Event bank	Mapping	remark	Sleep wake- up
EvtGASP	0	Evt0StsGASP	GASP data reception	Х
EvtSlpCnt		Evt1StsSlpCnt	Sleep counter wakeup timeout	X
EvtSPI	1	Evt1StsSPI	SPI, Start or Stop transmission	
EvtADC		Evt1StsADC	ADC conversion finished	

The following event sources shall wake-up the device from the Sleep mode if enabled by appropriate event masks:

Table 4. Wake-Up Events

Event Source	Event Status
Sleep counter	Evt1StsSlpCnt
GASP	Evt0StsGASP

12.9 EVENT MASKING


At start up or after any reset all event sources are masked (mask bits are '0'). To activate a specific event source input the corresponding mask bit must be set '1'. Masking does not clear an existing event but will prevent future events on the same input. Refer to Figure 10, Event acquisition architecture.

12.9.1.1 PRE AND POSTMASKING OF EVENTS

One pair of registers bits for each event **EvtXMsk** and **EvtXPostMsk** in register **RegEvtCfg** control the event generation for CPU and catch an incoming request into the status registers **RegEvtSts** as follows:

- If EvtXMsk='1' then the appropriate CPU event line EVX is asserted and the event is caught in the status bit EvtXSts.
- If **EvtXMsk=**'0' then the appropriate CPU interrupt line **EVX** is NOT asserted. The event is caught in the status register **EvtXSts** only if **EvtXPostMsk=**'1'.
- If **EvtXMsk=**'0' then the appropriate CPU interrupt line **EVX** is NOT asserted. The event is NOT caught in the status register **EvtXSts** only if **EvtXPostMsk=**'0'.

Figure 10, Event acquisition architecture

12.10 EVENT ACQUISITION CLEARING

A pending event can be cleared in 3 ways

- 1. Reading the event register **RegEvtSts** will automatically clear all stored events which were set prior to the read in the corresponding register.
- 2. Each event status bit can be individually cleared (set '0') by writing '0' to the corresponding **EvtXSts** bit. At power up or after any reset all event registers bits are reset.

12.11 SOFTWARE EVENT SETTING

Each event status bit can be individually set (set '1') by writing '1' to the corresponding **EvtXSts** bit in register **RegEvtCfg**.

12.12 EVENT REGISTERS

0x006	0x006B		3		Event Status
Bits	Name	Туре	ResVal	ResSrc	Description
7:4	-	NI	-	-	Not implemented
3	Evt1StsSlpCnt	RW-INT	0	ResSys	Event level-1 Status - Sleep Counter
2	Evt1StsSPI	RW-INT	0	ResSys	Event level-1 Status - SPI
1	Evt1StsADC	RW-INT	0	ResSys	Event level-1 Status - ADC
0	Evt0StsGASP	RW-INT	0	ResSys	Event level-0 Status - GASP

0x006	SC .	RegEvtCfg			Event Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	Evt1PostMskSC	RW	0	ResSys	Event level-1 Post-Mask - Sleep Counter
6	Evt1MskSC	RW	0	ResSys	Event level-1 Mask - Sleep Counter
5	Evt1PostMskSPI	RW	0	ResSys	Event level-1 Post-Mask - SPI
4	Evt1MskSPI	RW	0	ResSys	Event level-1 Mask - SPI
3	Evt1PostMskADC	RW	0	ResSys	Event level-1 Post-Mask - ADC
2	Evt1MskADC	RW	0	ResSys	Event level-1 Mask - ADC
1	Evt0PostMskGasp	RW	0	ResSys	Event level-0 Post-Mask - GASP
0	Evt0MskGasp	RW	0	ResSys	Event level-0 Mask - GASP

CPU INTERRUPT AND EVENT HANDLING **13**.

The CPU has three interrupt inputs of different priority. These inputs are directly connected to the peripheral interrupt acquisition block. Each of these inputs has its own interrupt vector. Individual interrupt enabling mechanism is provided for the 2 low priority inputs (IE1, IE2). The GIE acts as a master enable, if GIE is cleared no interrupt can reach the CPU, but may still be stored in the interrupt acquisition block. If the hardware stack of the CPU is full, all interrupt inputs are blocked. The number of implemented hardware stack levels is 5 but If CPU HW stack level is on level 4, only IntGASP, IntDoCPM and IntDoCDM shall generate a CPU interrupt.

Figure 11, CPU Interrupt architecture and Status register shows the architectural details concerning the interrupt and event latching and its enabling mechanism.

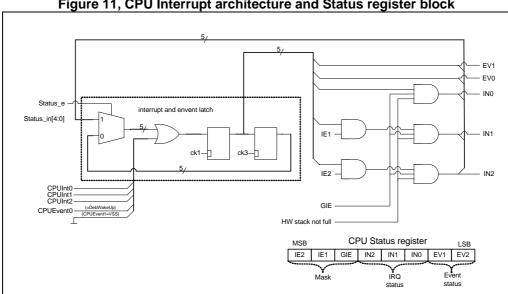


Figure 11, CPU Interrupt architecture and Status register block

An interrupt from the peripheral acquisition block i.e. CPUInt2 is synchronized in the CPU interrupt latch and fed to the CPU interrupt handler signal IN2 if enable bits IE2 and GIE are set and the hardware stack is not full.

Same thing applies to CPUInt1. CPUint0 is maskable only with GIE. As soon as the interrupt is latched, the GIE bit will be automatically cleared to avoid interleaved interrupts. Reading the interrupt acquisition register will clear the pending interrupt and at the end of the interrupt routine the RETI instruction will reinstall the GIE bit.

The CPU will loop in the interrupt routine as long as there is a CPU interrupt input active and the corresponding IE1, IE2 and GIE are set. Refer to 12.5 for Interrupt acquisition Clearing.

An interrupt or Event will also clear the CPU Halt mode. The HALT mode disabling remains active as long as one of the EV0, EV1, IN0, IN1, and IN2 signals is set.

Before leaving the interrupt service routine one needs to clear the active IRQ acquisition bit (inside RegIntxx) and the corresponding status bit (IN0, IN1, and IN2) in the CoolRISC status register. Failure to do so will re-invoke the interrupt service routine just after the preceding RETI instruction.

Software Interrupts and Events

The above shown CPU Interrupt handling implementation is an extension to the base structure and as such allows software interrupts and software events to be written directly in the interrupt and event latches (write '1' to CPU status register bit 0 to 4, signals status e and status in). Software written interrupts and events remain stored in the interrupt latch until they get cleared again (write '0' to status register bit 0 to bit 4).

13.1 INTERRUPT PRIORITY

Interrupt priority is used only to select which interrupt will be processed when multiple interrupt requests occur simultaneously. In such case the higher priority interrupt is handled first. At the end of the interrupt routine RETI the processor will immediately go back into the interrupt routine to handle the next interrupt of highest priority.

If a high priority interrupt occurs while the CPU is treating a low priority interrupt, the pending interrupt must wait until the GIE is enabled, usually by the RETI instruction.

13.2 CPU STATUS REGISTER

The status register, used to control the interrupts and events, is an internal register to the CoolRISC CPU. It therefore does not figure in the peripheral memory mapping. All CPU enable bits for the interrupts and the current status of the events and the interrupts are part of this register.

Table 5. CPU status register description

Bit	Name	Reset	Reset by	R/W	Description
7	IE2	0	ResSys	R/W	Level 2 Interrupt enable '1' = enabled, '0' = disabled
6	IE1	0	ResSys	R/W	Level 1 Interrupt enable '1' = enabled, '0' = disabled
5	GIE	0	ResSys	R/W*	General interrupt enable '1' = enabled, '0' = disabled
4	IN2	0	ResSys	R/W	Interrupt request level 2 flag, shows CPUInt2 '1' = IRQ pending, '0' = no IRQ The IRQ may only take place if IN2, IE2, and GIE are set
3	IN1	0	ResSys	R/W	Interrupt request level 1 flag, shows CPUInt1 '1' = IRQ pending, '0' = no IRQ The IRQ may only take place if IN1, IE1, and GIE are set
2	IN0	0	ResSys	R/W	Interrupt request level 0 flag, shows CPUInt1 '1' = IRQ pending, '0' = no IRQ The IRQ may only take place if IN0 and GIE are set
1	EV1	0	ResSys	R/W	Event request 1
0	EV0	0	ResSys	R/W	Event request 0

*Clear General Interrupt Enable bit GIE. Special care must be taken clearing the GIE bit. If an interrupt arrives during the clear operation the software may still branch into the interrupt routine and will set the GIE bit by the interrupt routine ending RETI instruction. This behavior may prevent from creating 'interrupt protected' areas within your code. A suitable workaround is to check if the GIE clearing took effect (Instruction) TSTB before executing the protected section.

13.3 CPU STATUS REGISTER PIPELINE EXCEPTION

Another consequence of the above interrupt implementation is that several instruction sequences work in a different way than expected. These instructions are mostly related to interrupt and event signals. For 'normal' instructions the pipeline is completely transparent.

If an interrupt is set by software (i.e. write into the status register with a MOVE stat) the pipeline causes the next instruction to be executed before the processor jumps to the interrupt subroutine. This allows one to supply a parameter to a 'trap' as in Code shown below.

SETB stat, #4 ; trap MOVE a #parameter ;

If an event bit is set by software (i.e. write into the CPU status register with a MOVE stat) and if a JEV (jump on event) instruction immediately follows the move, the jump on event will act as if the move has not been executed, since the write into the CPU status register will occur only once the JEV has been executed. The move takes 3 cycles to be executed and the JEV only one.

13.4 PROCESSOR VECTOR TABLE

Address 1, 2 and 3 of the program memory are reserved for interrupt subroutine calls. Generally the first four addresses of the program memory are reserved for the processor vector table. The address 0 of the program memory contains the jump to the start-up routine

Table 6. Processor vector table

Address	Accessed by	Description	Priority
0	ResSys	Any reset, start-up address	Maximal, above interrupts
1	IN1	Interrupt level 1	medium
2	IN2	Interrupt level 2	low
3	IN3	Interrupt level 0	high

13.5 CONTEXT SAVING

Since an interrupt may occur any time during normal program execution, there is no way to know which processor registers are used by the user program. For this reason, all resources modified in the interrupt service routine have to be saved upon entering and restored when leaving the service routine. The flags(C, V) and the accumulator (A) must always be saved, since most instructions will modify them. Other registers need only to be saved when they are modified in the interrupt service routine. There is a particular way to follow when saving resources. The accumulator should be saved first, followed by the flags and then the other registers

14. **PORT A**

The port A is general purpose 8-bit input output port. Each of the 8 Port A terminals can be configured to receive either Analog or digital Input or drive out analog or digital data.

14.1 PORT A TERMINAL MAPPING

Several digital and analog functions are mapped on the port A terminals. Please refer also to the concerned chapters.

Table 14.1-1 Port A terminal mapping

Name	IRQ	ADC	Reset & WkUp	VREF	VLD	ОРАМР	SPI	CLOCK	Timer clock	Timer start	PWM FrqOut	high drive
PA0	PAIRQ0	ADC0	Rst_Wkup0						t1ck0_in	start1_in	sig	
PA1	PAIRQ1	ADC2	Rst_Wkup1		VLD	OPA_Out			t2ck0_in	start2_in	sig	
PA2	PAIRQ2	ADC4	Rst_Wkup2	Vref_ADC	VLD	OPA_INM	SIN SOUT		t3ck0_in	start4_in	sig	
PA3	PAIRQ3	ADC6	Rst_Wkup3			OPA_INP			t4ck0_in	start5_in	sig	HD
PA4	PAIRQ4		Rst_Wkup4				SIN	XIN			sig	
PA5	PAIRQ5		Rst_Wkup5								sig	HD
PA6	PAIRQ6		Rst_Wkup6	Vref_out	VLD		SCLK				sig	HD
PA7	PAIRQ7		Rst_Wkup7		VLD		SOUT				sig	HD

Note: on all bit of port A debouncers are enable by default after reset,

14.2 PORT A IO OPERATION

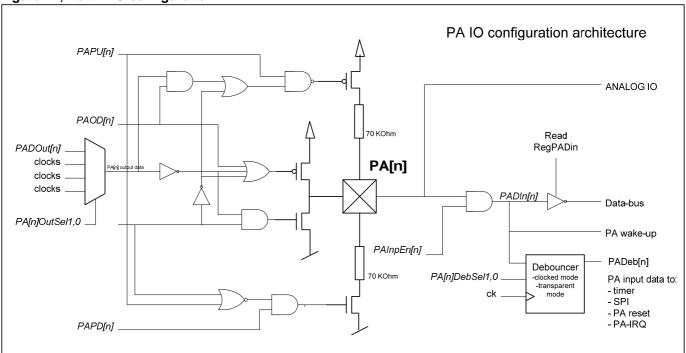

All IO modes are individually selectable for each port A terminal. Refer to table below.

Table 14.2-1 Port A IO selections

Modes	PAOE [n]	PA[n] Output data	PAOD[n]	PAPU[n]	PAPD[n]	PAInpE[n]	PA[n] Terminal	Notes
Analog signal connection (in out)		Χ	Χ	0	0	0	High-Z	Digital input is blocked, Analog
Analog signal connection (in out)		Χ	Χ	1	Χ	0	RLoad to VDD	functions can be connected
with weak load to VDD or VSS		Χ	Χ	0	1	0	RLoad to VSS	CPU reads '0'
Input mode		Х	Χ	0	0	1	High-Z	Digital input, no-pull, needs external driver
Input mode with pull-up		Χ	Χ	1	Χ	1	Weak Hi	Digital input with pullup
Input mode with pull-down		Χ	Χ	0	1	1	Weak Lo	Digital input with pulldown
Output, CMOS high level drive		1	0	Χ	Χ	Χ	1	Pull resistors disabled
Output, CMOS low level drive	1	0	0	Χ	Χ	Χ	0	Pull resistors disabled
Output, open drain, high-Z		1	1	0	Х	X	High-Z	Pull-down disabled, Usually ext Resistor pull-up
Output, open drain with pull-up		1	1	1	Χ	Χ	Weak Hi	Pull-up active
Output, open drain drive low		0	1	Χ	Χ	Χ	0	Pull-up disabled

Figure 12; Port A IO configuration

- For maximum flexibility all Port A configuration bits are are fully user configurable.
- The pull resistors are only active if the pad driver is not driving the pad terminal, and pullup or pulldown resistors are enabled. Pullup has priority over pulldown.
- The CPU read of the port A terminal logic value (PA[n]) in register **RegPADIn** is depending of the **PAInpEn** blocking bit. As such one reads '0' if **PAInpEn='0'** (Input blocked) and the terminal logic value if **PAInpEn='1'**.
- At power-up, the PA[n] terminals are tristate with pullup and pulldown resistors disconnected and the input is disabled. As such all PA terminal can float without the penalty of additional power consumption.
- All PA input signal sources for Timer, SPI, PA-Reset, PA-IRQ are coming from the debouncer output PADeb[n].

Note:

Make sure to setup the terminal correctly before using it as either digital IO or as an analog connection.

14.3 OUTPUT SIGNALS ON PORT A

Different internal clock frequencies and PWM signals can be outout on all port A terminals. (PA[n] Output data)

- The selection is done with the registers **PA[n]OutSel1,0**. All clock outputs (PR1_x, PR2_x, ck_x) have a 50% duty cycle.
- By default the register data **PADOut[n]** value is seleted as data output.
- Data is only output if the corresponding PAOutEn[n] bit is high.

Table 14.3-1 Port AOutput signal selection

ort Abatpat sign			
PA0OutSel1	PA0OutSel0	PA0 Output Data	remarks
0	0	PADOut[0]	
0	1	PWM3_N	
1	0	PWM2_N	
1	1	PWM4_N	
PA1OutSel1	PA1OutSel0	PA1 Output Data	remarks
0	0	PADOut[1]	
0	1	Pr1Ck11	2kHz if CK_PR1=32kHz
1	0	PWM1	
1	1	PWM2_N	
PA2OutSel1	PA2OutSel0	PA2 Output Data	remarks
0	0	PADOut[2]	
0	1	SOUT	
1	0	PWM1	
1	1	Ck_Hi	
PA3OutSel1	PA3OutSel0	PA3 Output Data	remarks
0	0	PADOut[3]	
0	1	Ck_Lo	
1	0	Pr1Ck11	2kHz if CK_PR1=32kHz
1	1	Pr1Ck10	1kHz if CK_PR1=32kHz
PA4OutSel1	PA4OutSel0	PA4 Output Data	remarks
0	0	PA-DOut[4]	
0	1	Ck_Hi_N	
1	0	Pr2Ck6_N	125kHz if CK_PR2=2MHz
1	1	Pr2Ck4_N	31kHz if CK_PR2=2MHz
PA5OutSel1	PA5OutSel0	PA5 Output Data	remarks
0	0	PADOut[5]	
0	1	PWM3	
1	0	PWM2	
1	1	PWM4	
PA6OutSel1	PA6OutSel0	PA6 Output Data	remarks
0	0	PADOut[6]	
0	1	SCLK	
1	0	PWM1_N	
1	1	CK_8K	
PA7OutSel1	PA7OutSel0	PA7 Output Data	remarks
0	0	PADOut[7]	
0	1	SOUT	
1	0	Pr1Ck11_N	2kHz if CK_PR1=32kHz
1	1	Pr1Ck10_N	1kHz if CK_PR1=32kHz
\\ / l ·			

Wheras:

- PWM3 = PWM output of timer 3 (refer to timer section)
- PWM3_N = inverse PWM output of timer 3
- Ck_Lo = Low frequency base clock (refer to clock selection)
- CK_Lo_N = inverse Low frequency base clock
- Pr1Ck11 = Prescaler 1, ck11 output (refer to prescaler)

14.4 PORT A DEBOUNCER

Each Port A input has its own debouncer with an independent clock selection. The debouncer is either transparent or clocked. The debouncer output signal is called **PADeb[n]**

- Transparent Mode: The input is immediately available on its output.
- Clocked mode: The debouncer copies is input state to its output only if during 2 consecutive debouncer clock events the debouncer input signal remains stable. The debouncer is reset on POR, in Power-Down mode, by a watchdog reset and a bus error reset.

Table 14.4-1 Port A Debouncer Mode and Clock selection

PA[n]DebSel1	PA[n]DebSel0	Clock	Mode	remarks
0	0	Pr1Ck7	Clocked	Clocked; 128 Hz if ck_pr1=32kHz
0	1	Pr1Ck15	Clocked	Clocked; Pr1 input clock
1	0	Pr2Ck10	Clocked	Clocked; Pr2 input clock
1	1	no clock	Transparent	Output = Input

14.5 PORT A INTERRUPT GENERATION

Each port A input may be used as Interrupt source with individual masking possibilities.

14.5.1 PA IRQ IN ACTIVE AND STANDBY MODE

The clocked PortA interrupt is generated in the Active and Standby modes only.

- A positive or negative edge of the debouncer output signal **PADeb**[n] shall generate the *IntPA[n]*. The edge selection is done by the register bit **PAIntEdg[n]** ('1' means a positive edge and it's the default state).
- The IntPA signal is the input to the interrupt controller.(refer to the interrupt controller for Irq masking and handling).
- All interrupt settings are independent for each PA input.

14.5.2 PA IRQ IN SLEEP MODE

In Sleep mode, any edge (positive or negative) of the PA[n] input while PAInpEn[n]=1 will generate an IntPA request.

- The IntPA signal is the input to the interrupt controller.(refer to the interrupt controller for Irq masking and handling).
- All interrupt settings are independent for each PA input.

14.6 PORT A RESET FUNCTION

Each port A input can be used to generate a system reset (ResSys in Reset controller).

- The Port A reset signal ResPA is a logical OR function of all PA input reset sources after masking.
- The input signals for the port A reset function are coming from the Port A debouncer output **PADeb**[n] and can be masked individually with **RegEnResPA[n]=**'0'. Default: all inputs are masked and no PA reset is generated.
- The ResPA is the output of the port A reset function and the input signal to the reset controller.

14.7 PORT A WAKE-UP FUNCTION

Each port A input can be used to wake-up the circuit from Power-Down mode.

• In Power-Down mode, any state change of a selected PA[n] input while its **PAInpEn[n]=1** will cancel wake-up and resume to active mode. A PA[n] input is only selected for wake-up if its **EnWkUp[n]** bit is at high level.

14.8 PORT A REGISTERS

0x000)A	RegPADIr)		Port-A Data Input
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PADIn	RO	0x00	ResSys	Port-A Data Input
0x000)B	RegPADO	out		Port-A Data Output
Bits	Name	Type	ResVal	ResSrc	Description Description
7:0	PADOut	RW_Res	0x00	ResSys	Port-A Data Output
0x000	OC .	RegPAInp	Ε		Port-A Input Enable
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PAInpE	RW_Res	0x00	ResAna	Port-A Input Enable
0x000	ND.	RegPAOE			Port-A Output Enable
Bits	Name	Type	ResVal	ResSrc	Description
7:0	PAOE	RW Res	0x00	ResAna	Port-A Output Enable
1.0	117.02	1111_1100	- ONOO	1100/1110	1 Sit 7 Catput Emable
0x000)E	RegPAPU			Port-A Pull Up
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PAPU	RW	0x00	PorLog	Port-A Pull Up
0x000F		RegPAPD			Port-A Pull Down
Bits	Name	Type	ResVal	ResSrc	Description
7:0	PAPD	RW	0x00	PorLog	Port-A Pull Down
0x001	10	RegPAOD	<u> </u>		Port-A Open Drain
Bits	Name	Type	ResVal	ResSrc	Description
7:0	PAOD	RW	0x00	ResSys	Port-A Open Drain
	1	1		,	•
0x001	15	RegPAInt	Edg		Port-A Interrupt Edge Selection: 1-Rising, 0-Falling
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PAIntEdg	RW	0xFF	ResSys	Port-A Interrupt Edge Selection: 1-Rising, 0-Falling
0x001	11	RegPAOu	tCfa0		Port-A Output Configuration/Selection - 0
	Name	Type	ResVal	ResSrc	Description
7:6	PA3OutSel	RW	'00'	ResSys	Port-A3 Output Configuration/Selection
	PA2OutSel	RW	'00'	ResSys	Port-A2 Output Configuration/Selection
3:2	PA1OutSel	RW	'00'	ResSys	Port-A1 Output Configuration/Selection
1:0	PA0OutSel	RW	'00'	ResSys	Port-A0 Output Configuration/Selection
0x001		RegPAOu		T = -	Port-A Output Configuration/Selection - 1
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PA7OutSel	RW	'00'	ResSys	Port-A7 Output Configuration/Selection
5:4	PA6OutSel	RW	'00'	ResSys	Port-A6 Output Configuration/Selection
3:2	PA5OutSel	RW	'00'	ResSys	Port-A5 Output Configuration/Selection
1:0	PA4OutSel	RW	'00'	ResSys	Port-A4 Output Configuration/Selection

0x0013

Name

PA3DebSel

PA2DebSel

PA1DebSel

PA0DebSel

Bits

7:6

5:4

3:2

1:0

ResSrc

ResAna

ResAna

ResAna

ResAna

RegPADebCfg1

ResVal

'00'

'00'

'00'

'00'

Type

RW

RW

RW

RW

Port-A Deboucer Configuration - 1

PA(3) Deboucer clock Selection/Enable

PA(2) Deboucer clock Selection/Enable

PA(1) Deboucer clock Selection/Enable

PA(0) Deboucer clock Selection/Enable

Description

0x001	0x0014 RegPADebCfg2				Port-A Deboucer Configuration - 2		
Bits	Name	Туре	ResVal	ResSrc	Description		
7:6	PA7DebSel	RW	'00'	ResAna	PA(7) Deboucer clock Selection/Enable		
5:4	PA6DebSel	RW	'00'	ResAna	PA(6) Deboucer clock Selection/Enable		
3:2	PA5DebSel	RW	'00'	ResAna	PA(5) Deboucer clock Selection/Enable		
1:0	PA4DebSel	RW	'00'	ResAna	PA(4) Deboucer clock Selection/Enable		

0x000)1	RegEnRes	PA		Enable Reset by PortA bits
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	EnResPA	RW	0x00	ResAna	Enable Reset by PortA bits

0x000)2	RegEnWkl	JpPA		Enable of Wake Up from Power-Down by PortA
Bits	Name	Type ResVal ResSrc			Description
7:0	EnWkUpPA	RW	0x00	ResSys	Enable of Wake Up from Power-Down by PA bits

15. PORT B

The port B is general purpose 8-bit input output port. Each of the 8 Port B terminals can be configured to receive either Analog or digital Input or drive out analog or digital data.

The port B, PB7 and PB6 terminals, are special inputs for device programming and debugging. These 2 ports will have special configurations as soon as TM terminal is high to allow Gasp (ISP, DoC) accesses.

15.1 PORT B TERMINAL MAPPING

Several digital and analog functions are mapped on the port B terminals. Please refer also to the concerned chapters.

Table 15.1-1 Port B terminal mapping

Name	IRQ	ADC	Reset & WkUp	VLD	ОРАМР	SPI	GASP	СГОСК	Timer clock	Timer start	PWM FrqOut	high drive
PB0						SIN					sig	HD
PB1											sig	HD
PB2						SCLK					sig	HD
PB3											sig	HD
PB4						SOUT					sig	HD
PB5											sig	HD
PB6							GASP-SCK				sig	HD
PB7							GASP-SIO				sig	HD

15.2 PORT B IO OPERATION

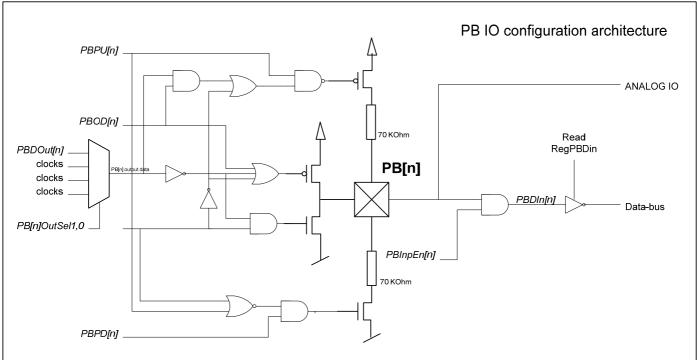

All IO modes are individually selectable for each port B terminal. Refer to table below.

Table 15.2-1 Port B IO selections

Table 13.2-1 FULL DIO Sciections								
Modes	PBOE [n]	PB[n] Output data	[u]qoad	[u]naaa	[v]QA8A	PBInpE[n]	PB[n] Terminal	Notes
Analog signal connection (in out)	0	Χ	Χ	0	0	0	High-Z	Digital input is blocked, Analog
Analog signal connection (in out)	0	Χ	Χ	1	Χ	0	RLoad to VDD	functions can be connected
with weak load to VDD or VSS	0	Χ	Χ	0	1	0	RLoad to VSS	CPU reads '0'
Input mode	0	Х	Χ	0	0	1	High-Z	Digital input, no-pull, needs external driver
Input mode with pull-up	0	Х	Χ	1	Χ	1	Weak Hi	Digital input with pullup
Input mode with pull-down	0	Х	Χ	0	1	1	Weak Lo	Digital input with pulldown
Output, CMOS high level drive	1	1	0	Χ	Χ	Χ	1	Pull resistors disabled
Output, CMOS low level drive	1	0	0	Χ	Χ	Χ	0	Pull resistors disabled
Output, open drain, high-Z	1	1	1	0	Х	Χ	High-Z	Pull-down disabled,
	ı	I		U			i iigii-Z	Usually ext Resistor pull-up
Output, open drain with pull-up	1	1	1	1	Χ	Χ	Weak Hi	Pull-up active
Output, open drain drive low	1	0	1	Χ	Χ	Χ	0	Pull-up disabled

Figure 13; Port B IO configuration

- For maximum flexibility all Port B configuration bits are are fully user configurable.
- The pull resistors are only active if the pad driver is not driving the pad terminal, and pullup or pulldown resistors are enabled. Pullup has priority over pulldown.
- The CPU read of the port B terminal logic value (PB[n]) in register **RegPBDIn** is depending of the **PBInpEn** blocking bit. As such one reads '0' if **PBInpEn='0**' (Input blocked) and the terminal logic value if **PBInpEn='1**'.
- At power-up, the PB[n] terminals are tristate with pullup and pulldown resistors disconnected and the input is disabled. As such all PB terminal can float without the penalty of additional power consumption.

Note:

Make sure to setup the terminal correctly before using it..

15.2.1 GASP COMMUNICATION ON PB7, PB6

As soon as TM terminal becomes high the terminal PB7 and PB6 configurations are forced by the Gasp module without altering the port B register settings. Gasp mode has priority over normal IO mode on these 2 terminals.

15.3 OUTPUT SIGNALS ON PORT B

Different internal clock frequencies and PWM signals can be outout on all port B terminals. (PB[n] Output data)

- The selection is done with the registers **PB[n]OutSel1,0**. All clock outputs (PR1_x, PR2_x, ck_x) have a 50% duty cycle.
- By default the register data PBDOut[n] value is seleted as data output.
- Data is only output if the corresponding **PBOutEn[n]** bit is high.

Table 15.3-1 Port B Output signal selection

	gnai selection PB0OutSel0	PB0 Output Data	remarks
PB0OutSel1	0	PBDOUT[0]	Tomano
0	1	PWM3	
1	0	PWM2	
1	1	PWM4	
·	-		vo no o vico
PB1OutSel1	PB1OutSel0	PB1 Output Data	remarks
0	0	PBDOUT[1]	
0	1	PWM3_N	
1	0	PWM2_N	
1	1	PWM4_N	
PB2OutSel1	PB2OutSel0	PB2 Output Data	remarks
0	0	PBDOUT[2]	
0	1	SCLK	
1	0	PWM1	
1	1	PWM3	
PB3OutSel1	PB3OutSel0	PB3 Output Data	remarks
0	0	PBDOUT[3]	
0	1	CK Hi	
1	0	PWM1_N	
1	1	PWM3 N	
PB4OutSel1	PB4OutSel0	PB4 Output Data	remarks
0	0	PBDOUT[4]	
0	1	SOUT	
1	0	PWM1	
1	1	PWM3	
PB5OutSel1	PB5OutSel0	PB5 Output Data	remarks
0	0	PBDOUT[5]	
0	1	PWM3	
1	0	PWM2	
1	1	PWM4	
PB6OutSel1	PB6OutSel0	PB6 Output Data	remarks
0	0	PBDOUT[6]	· omanto
0	1	PWM1 N	
	0	PWM3 N	
1			
1	1	Pr1Ck11	2kHz if CK_PR1=32kHz
1	1		_
1 PB7-OutSel1	1 PB7-OutSel0	PB7 Output Data	2kHz if CK_PR1=32kHz remarks
1 PB7-OutSel1 0	1 PB7-OutSel0 0	PB7 Output Data PBDOUT[7]	_
1 PB7-OutSel1 0 0	1 PB7-OutSel0 0 1	PB7 Output Data PBDOUT[7] PWM1	_
1 PB7-OutSel1	1 PB7-OutSel0 0	PB7 Output Data PBDOUT[7]	_

Wheras:

- PWM3 = PWM output of timer 3 (refer to timer section)
- PWM3_N = inverse PWM output of timer 3
- Ck_Hi = High frequency base clock (refer to clock selection)
- Pr1Ck10 = Prescaler 1, ck10 output (refer to prescaler)

15.4 PORT B REGISTERS

0x001	16	RegPBDin			Port-B Data Input
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PBDIn	RO	0x00	ResSys	Port-B Data Input

0x001	7	RegPBDO	ut		Port-B Data Output
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	PBDOut	RW Res	0x00	ResSys	Port-B Data Output

0x001	18	RegPBInp	E		Port-B Input Enable
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	PBInpE	RW_Res	0x00	ResSys	Port-B Input Enable

0x001	9	RegPBOE			Port-B Output Enable
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PBOE	RW_Res	0x00	ResSys	Port-B Output Enable

0x001	0x001A RegPBPU				Port-B Pull Up
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	PBPU	RW_Res	0x00	PorLog	Port-B Pull Up

0x001	В	RegPBPD			Port-B Pull Down
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	PBPD	RW_Res	0x00	PorLog	Port-B Pull Down

0x001	IC	RegPBOD			Port-B Open Drain
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	PBOD	RW_Res	0x00	ResSys	Port-B Open Drain

0x001	0x001D RegPBOutCfg0		Port-B Output Configuration/Selection - 0		
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PB3OutSel	RW	'00'	ResSys	Port-B3 Output Configuration/Selection
5:4	PB2OutSel	RW	'00'	ResSys	Port-B2 Output Configuration/Selection
3:2	PB1OutSel	RW	'00'	ResSys	Port-B1 Output Configuration/Selection
1:0	PB0OutSel	RW	'00'	ResSys	Port-B0 Output Configuration/Selection

0x001	0x001E RegPBOutCfg1			Port-B Output Configuration/Selection - 1	
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PB7OutSel	RW	'00'	ResSys	Port-B7 Output Configuration/Selection
5:4	PB6OutSel	RW	'00'	ResSys	Port-B6 Output Configuration/Selection
3:2	PB5OutSel	RW	'00'	ResSys	Port-B5 Output Configuration/Selection
1:0	PB4OutSel	RW	'00'	ResSys	Port-B4 Output Configuration/Selection

16. PORT C

The port C is general purpose 8-bit input output port. Each of the 8 Port C terminals can be configured to receive either Analog or digital Input or drive out analog or digital data.

16.1 PORT C TERMINAL MAPPING

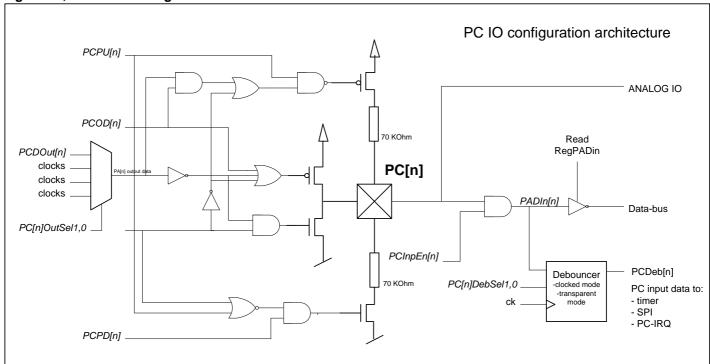
Several digital and analog functions are mapped on the port C terminals. Please refer also to the concerned chapters.

Table 16.1-1 Port C terminal mapping

Name	IRQ	ADC	Reset & WkUp	VREF	VLD	ОРАМР	SPI	CLOCK	Timer clock	Timer start	PWM FrqOut	high drive
PC0	PCIRQ0	ADC1									sig	
PC1	PCIRQ1	ADC3			VLD	OPA_Out			t2ck1_in	start3_in	sig	
PC2	PAIRQ2	ADC5				OPA_INM	SOUT				sig	
PC3	PCIRQ3	ADC7				OPA_INP			t4ck1_in	start6_in	sig	HD
PC4	PCIRQ4							XOUT ExtCk			sig	
PC5	PCIRQ5				VLD						sig	HD
PC6	PCIRQ6			·	VLD		SCLK		t1ck1_in	start7_in	sig	HD
PC7	PCIRQ7								t3ck1_in		sig	

16.2 PORT C IO OPERATION

All IO modes are individually selectable for each port C terminal. Refer to table below.


Table 16.2-1 Port C IO selections

Modes	PCOE [n]	PC[n] Output data	PCOD[n]	PCPU[n]	PCPD[n]	PCInpE[n]	PC[n] Terminal	Notes
Analog signal connection (in out)	0	Χ	Χ	0	0	0	High-Z	Digital input is blocked, Analog
Analog signal connection (in out)	0	Χ	Χ	1	Χ	0	RLoad to VDD	functions can be connected
with weak load to VDD or VSS	0	Χ	Χ	0	1	0	RLoad to VSS	CPU reads '0'
Input mode	0	Χ	Χ	0	0	1	High-Z	Digital input, no-pull, needs external driver
Input mode with pull-up	0	Χ	Χ	1	Χ	1	Weak Hi	Digital input with pullup
Input mode with pull-down	0	Χ	Χ	0	1	1	Weak Lo	Digital input with pulldown
Output, CMOS high level drive	1	1	0	Χ	Χ	Χ	1	Pull resistors disabled
Output, CMOS low level drive	1	0	0	Χ	Χ	Χ	0	Pull resistors disabled
Output, open drain, high-Z	1	1	1	0	Χ	Χ	High-Z	Pull-down disabled, Usually ext Resistor pull-up
Output, open drain with pull-up	1	1	1	1	Χ	Χ	Weak Hi	Pull-up active
Output, open drain drive low	1	0	1	Χ	Χ	Χ	0	Pull-up disabled

Note: on all bit of port C debouncers are enable by default after reset,

Figure 14; Port C IO configuration

- For maximum flexibility all Port C configuration bits are are fully user configurable.
- The pull resistors are only active if the pad driver is not driving the pad terminal, and pullup or pulldown resistors are enabled. Pullup has priority over pulldown.
- The CPU read of the port C terminal logic value (PC[n]) in register **RegPCDIn** is depending of the **PCInpEn** blocking bit. As such one reads '0' if **PCInpEn='0'** (Input blocked) and the terminal logic value if **PCInpEn='1'**.
- At power-up, the PC[n] terminals are tristate with pullup and pulldown resistors disconnected and the input is disabled. As such all PC terminal can float without the penalty of additional power consumption.
- All PC input signal sources for Timer, SPI, PC-IRQ are coming from the debouncer output *PCDeb*[n].

Note:

Make sure to setup the terminal correctly before using it as either digital IO or as an analog connection.

16.3 OUTPUT SIGNALS ON PORT C

Different internal clock frequencies and PWM signals can be outout on all port C terminals. (PA[n] Output data)

- The selection is done with the registers **PC[n]OutSel1,0**. All clock outputs (PR1_x, PR2_x, ck_x) have a 50% duty cycle.
- By default the register data **PCDOut[n]** value is seleted as data output.
- Data is only output if the corresponding PCOutEn[n] bit is high.

Table 16.3-1 Port C Output signal selection

PC0OutSel1	PC0OutSel0	PC0 Output Data	remarks
0	0	PCDOUT[0]	
0	1	Pr2Ck6	125kHz if CK_PR2=2MHz
1	0	Pr2Ck4	31kHz if CK_PR2=2MHz
1	1	Pr2Ck0	2kHz if CK_PR2=2MHz
PC1OutSel1	PC1OutSel0	PC1 Output Data	remarks
0	0	PCDOUT[1]	
0	1	PWM4_N	
1	0	PWM1_N	
1	1	PWM3_N	
PC2OutSel1	PC2OutSel0	PC2 Output Data	remarks
0	0	PCDOUT[2]	
0	1	SOUT	
1	0	PWM1_N	
1	1	Ck_Lo	
PC3OutSel1	PC3OutSel0	PC3 Output Data	remarks
0	0	PCDOUT[3]	
0	1	CK_LO_N	
1	0	Pr1Ck11_N	2kHz if CK_PR1=32kHz
1	1	Pr1Ck10_N	1kHz if CK_PR1=32kHz
PC4OutSel1	PC4OutSel0	PC4 Output Data	remarks
0	0	PCDOUT[4]	
0	1	Ck_Hi	
1	0	Pr2Ck6	125kHz if CK_PR2=2MHz
1	1	Pr2Ck4	31kHz if CK_PR2=2MHz
PC5OutSel1	PC5OutSel0	PC Output Data	remarks
0	0	PCDOUT[5]	
0	1	CK_8K	
1	0	Pr2Ck6	125kHz if CK_PR2=2MHz
1	1	Pr2Ck4	31kHz if CK_PR2=2MHz
PC6OutSel1	PC6OutSel0	PC Output Data	remarks
0	0	PCDOUT[6]	
0	1	SOUT	
1	0	PWM1_N	
1	1	Ck_Lo	
PC7OutSel1	PC7OutSel0	PC Output Data	remarks
0	0	PCDOUT[7]	
0	1	PWM1	
1	0	PWM3_N	
1	1	Pr1Ck12	4kHz if CK_PR1=32kHz

Wheras:

- PWM1 = PWM output of timer 1 (refer to timer section)
- PWM1_N = inverse PWM output of timer 1
- Ck_Hi = High frequency base clock (refer to clock selection)
- Pr1Ck12 = Prescaler 1, ck12 output (refer to prescaler)

16.4 PORT C DEBOUNCER

Each Port C input has its own debouncer with an independent clock selection. The debouncer is either transparent or clocked. The debouncer output signal is called *PCDeb*[n].

- Transparent Mode: The input is immediately available on its output.
- Clocked mode: The debouncer copies is input state to its output only if during 2 consecutive debouncer clock
 events the debouncer input signal remains stable. The debouncer is reset on POR, in Power-Down mode, by a
 watchdog reset and a bus error reset.

Table 16.4-1 Port C Debouncer Mode and Clock selection

PC[n]DebSel1	PC[n]DebSel0	Clock	Mode	remarks
0	0	Pr1Ck7	Clocked	Clocked; 128 Hz if ck_pr1=32kHz
0	1	Pr1Ck15	Clocked	Clocked; Pr1 input clock
1	0	Pr2Ck10	Clocked	Clocked; Pr2 input clock
1	1	no clock	Transparent	Output = Input

16.5 PORT C INTERRUPT GENERATION

Each port C input may be used as Interrupt source with individual masking possibilities.

16.5.1 PC IRQ IN ACTIVE AND STANDBY MODE

The clocked port C interrupt is generated in the Active and Standby modes only.

- A positive or negative edge of the debouncer output signal *PCDeb*[n] shall generate the *IntPC*[n] interrupt request. The edge selection is done by the register bit *PCIntEdg[n]* ('1' means a positive edge and it's the default state).
- The IntPC signal is the input to the interrupt controller. (Refer to the interrupt controller for Irq masking and handling).
- All interrupt settings are independent for each PC input.

16.5.2 PC IRQ IN SLEEP MODE

There is no port C interrupt possibility in Sleep mode. Port C interrupt input will automatically switch to the corresponding port A in Sleep mode. Refer also to the interrupt controller section 10

16.6 PORT C REGISTERS

0x001	IF	RegPCDir	1		Port-C Data Input
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PCDIn	RO	0x00	ResSys	Port-C Data Input
0x002	20	RegPCDC	out		Port-C Data Output
Bits	Name	Type	ResVal	ResSrc	Description
7:0	PCDOut	RW_Res	0x00	ResSys	Port-C Data Output
	•	•	•	•	•
0x002		RegPCInp			Port-C Input Enable
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PCInpE	RW_Res	0x00	ResSys	Port-C Input Enable
0x002	22	RegPCOE			Port-C Output Enable
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PCOE	RW_Res	0x00	ResSys	Port-C Output Enable
0006	20	D. DODI			Dest O Politic
0x002		RegPCPU		D 0	Port-C Pull Up
Bits	Name	Type	ResVal	ResSrc	Description
7:0	PCPU	RW_Res	0x00	PorLog	Port-C Pull Up
0x002	24	RegPCPD	1		Port-C Pull Down
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PCPD	RW_Res	0x00	PorLog	Port-C Pull Down
0,,000) E	De «DCOD			Dowl C Onen Duein
0x002 Bits	Name	RegPCOD	ResVal	ResSrc	Port-C Open Drain Description
7:0	PCOD	Type RW Res			Port-C Open Drain
7.0	PCOD	RW_Res	0x00	ResSys	Port-C Open Drain
0x002	2A	RegPCInt	Edg		Port-C Interrupt Edge Selection: 1-Rising, 0-Falling
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	PCIntEdg	RW	0xFF	ResSys	Port-C Interrupt Edge Selection: 1-Rising, 0-Falling
0x002)e	PogPCO:	+Cfa0		Port C Output Configuration/Soloation 0
Bits		RegPCOu		Basers	Port-C Output Configuration/Selection - 0
7:6	Name PC3OutSel	Type RW	ResVal	ResSrc ResSys	Description Port-C3 Output Configuration/Selection
5:4	PC2OutSel	RW	'00'	ResSys	Port-C2 Output Configuration/Selection
3:2	PC1OutSel	RW	'00'	ResSys	Port-C1 Output Configuration/Selection
1:0	PC0OutSel	RW	'00'	ResSys	Port-C0 Output Configuration/Selection
1.0	i Cocassei	IXVV	1 00	I IVESONS	1 ort-oo Output Coringulation/Selection
0x002	27	RegPCOu	tCfg1		Port-C Output Configuration/Selection - 1
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PC7OutSel	RW	'00'	ResSvs	Port-C7 Output Configuration/Selection

0x0027 RegPCOutCfg1			tCfg1		Port-C Output Configuration/Selection - 1
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PC7OutSel	RW	'00'	ResSys	Port-C7 Output Configuration/Selection
5:4	PC6OutSel	RW	'00'	ResSys	Port-C6 Output Configuration/Selection
3:2	PC5OutSel	RW	'00'	ResSys	Port-C5 Output Configuration/Selection
1:0	PC4OutSel	RW	'00'	ResSys	Port-C4 Output Configuration/Selection

0x002	0x0028 RegPCDebCfg1		Port-C Deboucer Configuration - 1		
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PC3DebSel	RW	'00'	ResSys	PC(3) Deboucer clock Selection/Enable
5:4	PC2DebSel	RW	'00'	ResSys	PC(2) Deboucer clock Selection/Enable
3:2	PC1DebSel	RW	'00'	ResSys	PC(1) Deboucer clock Selection/Enable
1:0	PC0DebSel	RW	'00'	ResSys	PC(0) Deboucer clock Selection/Enable

0x0029		RegPCD	RegPCDebCfg2		Port-C Deboucer Configuration - 2
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	PC7DebSel	RW	'00'	ResSys	PC(7) Deboucer clock Selection/Enable
5:4	PC6DebSel	RW	'00'	ResSys	PC(6) Deboucer clock Selection/Enable
3:2	PC5DebSel	RW	'00'	ResSys	PC(5) Deboucer clock Selection/Enable
1:0	PC4DebSel	RW	'00'	ResSvs	PC(4) Deboucer clock Selection/Enable

17. TIMERS

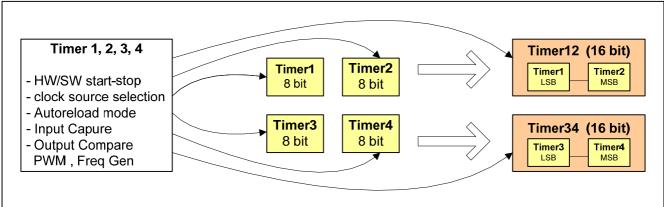
The circuit contains 4 independent 8-bit timers configurable as 2 16-bit timers.

- Each of it can be individually configured with:
- 6 internal clock sources and 2 external clock sources from PA, PC terminals
- Individual Start/Stop selection by SW or from various IO terminals
- Timer interrupt selection
- Auto-reload(free-running) and Auto-Stop mode
- Input Capture on hardware events (terminal input) or SW driven
- Output Compare for signal generation
- · PWM and Frequency output
- RTZ, RTO output clock capabilities
- Timer outputs mapping on various IO terminals
- Always also provides complementary level output to increase overall voltage swing.

The timers are implemented as up-counters, counting from 0x00 to **RegTimXFull** or as a free running counter cycling from 0x00 to **RegTimXFull**. If the full value changes while the timer is running, the previous full value will be used for the full event detection. The new full value will be used for the next counting cycle.

The timer status value (actual count value) is readable in registers RegTimXStatus.

17.1 TIMER CHAINING


Possible configurations are:

- Timer1, Timer2, Timer3, Timer4 used independently
- Timer1 and Timer2 chained together (Timer12); Timer3 and Timer 4 used independently
- Timer1 and Timer2 used independently; Timer3 and Timer4 chained (=Timer34)
- Timer1 and Timer2 chained together (Timer12); Timer3 and Timer4 chained (=Timer34)

Timer1 and Timer2 are chained and able to work as 16-bits timer when **Tim12Chain** in **RegTimersCfg** is high. In this case, the configuration is set by the Timer1 and Timer2 (slave) is the MSB.

Timer3 and Timer4 are chained and able to work as 16-bits timer when **Tim34Chain** in **RegTimersCfg** is high. In this case, the configuration is set by the Timer3 and Timer4 (slave) is the MSB.

Figure 15, Timer chaining

17.2 TIMER CLOCK SOURCES

The timer clock inputs connect directly to the prescaler1 and prescaler2 outputs. The prescalers themselves connect to **Ck_Hi** or **Ck_Lo** which are derived from the internal RC oscillators or the external clock sources from XTAL, Resonator or PC4 input. Please refer to the chapter Clock selection and Clock switching for more details about the basic clock setup.

Additionaly to the prescaler clock sources the timers may also run on 2 external clocks sources, one from PA the other from PC.

The clock source selection is done in registers **RegTimXCfg** bits **TimXSelClk** as follows (X stands for 1,2,3,4)

Table 17.2-1 Timer clock configuration

Table 17.2-1 1	inigaration			
Tim1SelClk [2:0]	Timer1, Timer12		Tim2SelClk [2:0]	Timer2
000	PA0		000	PA1
001	PC6		001	PC1
010	Pr2Ck10		010	Pr2Ck10
011	Pr2Ck8		011	Pr1Ck15
100	Pr2Ck6		100	Pr1Ck14
101	Pr1Ck15		101	Pr1Ck12
110	Pr1Ck13		110	Pr1Ck10
111	Pr1Ck11		111	Pr1Ck8

Tim3SelClk [2:0]	Timer3, Timer34
000	PA2
001	PC7
010	Pr2Ck10
011	Pr2Ck8
100	Pr2Ck4
101	Pr1Ck15
110	Pr1Ck13
111	Pr1Ck9

Tim4SelClk [2:0]	Timer4
000	PA3
001	PC3
010	Pr2Ck10
011	Pr1Ck15
100	Pr1Ck13
101	Pr1Ck11
110	Pr1Ck9
111	Pr1Ck7

Maximal external timer input clock frequency must be lower than to *Ck_Hi*/2 or *Ck_Lo*/2 if Ck_Hi is not used.

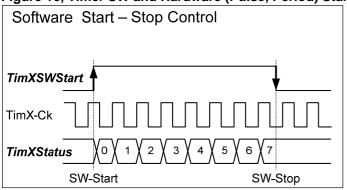
Table 17.2-2 Timer clock configuration overview (decimal values of TimXSelClk)

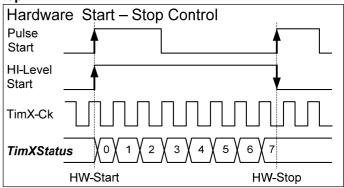
TimXSelClk [2:0]	Tim1-Ck, Tim12-Ck	Tim2-Ck	Tim3-Ck Tim34-Ck	Tim4-Ck	
Timer ck selection to Prescaler 1 freq					
Pr1Ck15	5	3	5	3	
Pr1Ck14		4			
Pr1Ck13	6		6	4	
Pr1Ck12		5			
Pr1Ck11	7			5	
Pr1Ck10		6			
Pr1Ck9			7	6	
Pr1Ck8		7			
Pr1Ck7				7	
Tin	ner ck selection	on to Presca	ler 2 freq		
Pr2Ck10	2	2	2	2	
Pr2Ck9					
Pr2Ck8	3		3		
Pr2Ck7					
Pr2Ck6	4				
Pr2Ck5					
Pr2Ck4			4		
Tir	ner ck selection	on to PA inp	ut clocks		
PA[0]	0				
PA[1]		0			
PA[2]			0		
PA[3]				0	
PC[1]		1			
PC[3]				1	
PC[6]	1				
PC[7]			1		

17.3 TIMER START

The timers can be started and stopped by SW or hardware events. To be able to start the **RegTimXFull** value must not be equal to 0x00.

All timer settings must be performed before starting the timer.


The timer start and stop selection are done in registers **RegTimXCfg** bits **TimXSelStart** as follows:


Table 17.3-1 Timer start selection

TimXSelStart [2:0]	Timer1, Timer12	Timer2	Timer3, Timer34	Timer4		
000 SW start		SW start	SW start	SW start		
Hardware start - stop selections						
001	PA0	PA0	PA0	PA0		
010	PA1	PA1	PA1	PA1		
011	PC1	PC1	PC1	PC1		
100	PA2	PA2	PA2	PA2		
101	PA3	PA3	PA3	PA3		
110	PC3	PC3	PC3	PC3		
111	PC6	PC6	PC6	PC6		

The pulse-width on the external start signal must be longer than 1 period of the selected timerX clock period.

Figure 16, Timer SW and Hardware (Pulse, Period) Start-Stop

17.3.1 SOFTWARE START - STOP

In case of software start selection (**TimXSelStart**='000') the timers will start counting from 0x00 as soon as **TimXSWStart** in **RegTimersStart** goes to high level.

When TimXSWStart goes to low level, the timerX will stop counting and RegTimXStatus keeps its status value.

17.3.2 HARDWARE START – STOP (PERIOD COUNTING)

In case of hardware start selection (**TimXSelStart** <> 000) and **TimXPulse** in **RegTimersStart** is low, the timer will start counting from 0x00 as soon as the selected external start input **ExtTimXStart** goes to high level. When another pulse occurs on **ExtTimXStart**, timerX shall stop to count and **RegTimXStatus** keeps its status.

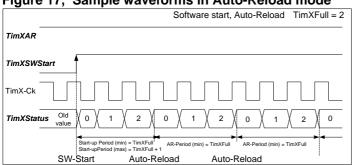
The pulse-width *ExtTimXStart* should be longer than 2 periods of the selected timerX clock period.

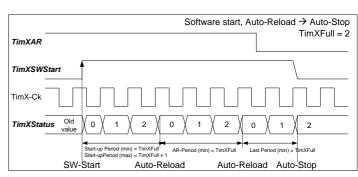
17.3.3 HARDWARE START – STOP (PULS COUNTING)

In case of hardware start selection (**TimXSelStart** <> '000') and **TimXPulse** in **RegTimersStart** is high, the timer will start counting from 0x00 on the first positive pulse on the selected external start input **ExtTimXStart**. When **ExtTimXStart** goes back to low level, timerX will stop to count and **RegTimXStatus** keeps its status.

17.4 AUTO-RELOAD MODE

In autoreload mode the timerX always restart counting from 0x00 once its status reaches **TimXFull** value. It will act as a free running counter.


Going into Auto-reload mode:


• By setting the corresponding TimXAR bit in register RegTimersCfg at high level.

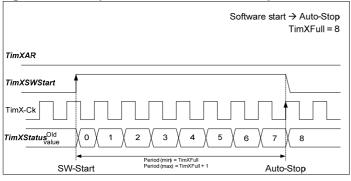
Canceling Auto-Reload mode

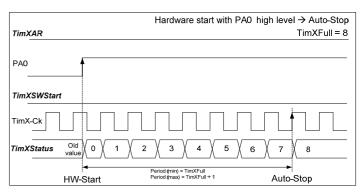
- By a sytem reset, stopp immediately, TimXStatus cleared.
- By a removed start condition, stopp immediately, TimXStatus maintained.
- By TimXAR written to '0', stopp after reaching TimXFull value.

Figure 17, Sample waveforms in Auto-Reload mode

17.5 AUTO-STOP MODE

In auto-stop mode the timerX counts from 0x00 until it reaches TimXFull value.


Going into Auto-Stop mode:


• By setting the corresponding **TimXAR** bit in register **RegTimersCfg** at low level.

Stopping the timer

- By a sytem reset, stopp immediately, **TimXStatus** cleared.
- Removed Start condition, stopp immediately, TimXStatus maintained.
- The timerX automatically stopps when reaching TimXFull value.

Figure 18, Sample waveforms in Auto-Stop mode

17.6 TIMER INPUT CAPTURE

The input capture system allows taking a timer snapshot based on an internal SW event or an external hardware event by writing the timer status value into the capture register at the occurrence of the capture event.

An Interrupt *IntTimX* is generated on all active hardware capture events. Capture events are ignored if the timer is not running.

Valid capture events are:

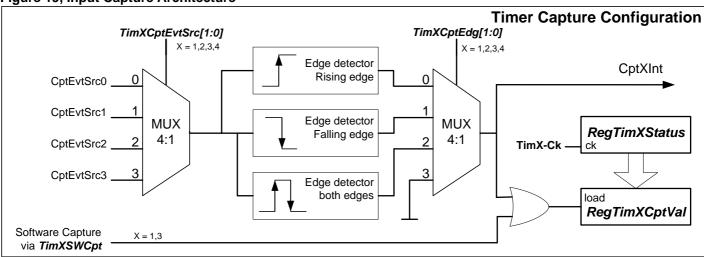
- Software SW capture (on Timer1, Timer12, Timer3 and Timer34 only)
- · Hardware capture on all timers, Falling edge
- Hardware capture on all timers, Rising edge
- Hardware Capture on all timers, Both edges

In SW capture, the event is generated by writing '1' to the bit **Tim1SWCpt** in register **RegTimersCfg.Tim1SWCpt** Timer3 by wiriting '1' to the bit **Tim3SWCpt** in register **RegTimersCfg.Tim3SWCpt**.

In hardware capture the active capture inputs are selected in register **RegTimXCptCmpCfg** bits **TimXCptCptEvtSrc** as follows:

Tim1CptEvtSrc[1:0]	External event
00	PA2
01	COMP
10	VLD
11	PA1

Tim2CptEvtSrc[1:0]	External event
00	PA2
01	PA1
10	PA3
11	VLD


Tim3CptEvtSrc[1:0]	External event
00	PA2
01	COMP
10	PC4
11	PA3

Tim4CptEvtSrc[1:0]	External event
00	PC7
01	PC0
10	PA0
11	VLD

In hardware caputure the active edge(s) of the selected event source is defined by register **RegTimXCptCmpCfg** bits **TimXCptEdg** as follows:

TimXCptEdg	Selected edge for event signal
00	no action
01	falling edge
10	rising egde
11	both edges

Figure 19, Input Capture Architecture

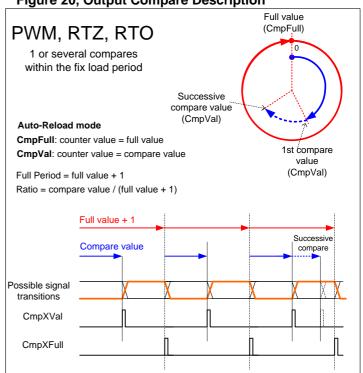
17.7 OUTPUT COMPARE

The output compare function allows generating a multitude of different output signal waveforms. PWM, variable or fix frequencies, RTZ (Return To Zero clocks), RTO (Return To One clocks) to name just a few. It may also be used to encode serial protocols i.e Manchaster encoding. The compare function is enabled by setting TimXEnPWM in register RegTimXCfg to '1'.

The compare function uses the PWMX signal of the timer.

At system reset **PWMX** is forced low.

PWMX will maintain its last status when the corresponding TimXEnPWM ='0'.


Whenever the timer reaches RegTimXFull or RegTimXCmpVal an action may be performed on PWMX. The action is defined TimXCmpFullAct when it reaches RegTimXFull and by TimXCmpValAct when it reaches RegTimXCmpVal as defined in tables below: (TimXCmpFullAct action has a priority).

Successive comparisons may be made.

Output compare usually is used in Auto-Reload mode (free running counter).

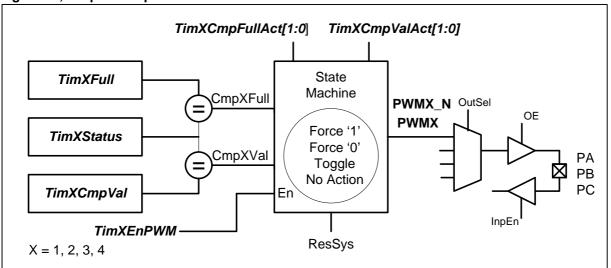
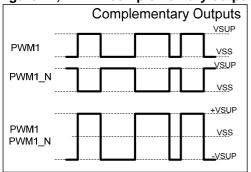

Action when timerX **TimXCmpValAct** reaches RegTimXCmpVal No action on PWMX 00 01 Force 0 on PWMX 10 Force 1 on PWMX 11 Toggle PWMX

Figure 20, Output Compare Description

TimXCmpFullAct	Action when timerX reaches RegTimXFull
00	No action on PWMX
01	Force 0 on <i>PWMX</i>
10	Force 1 on PWMX
11	Toggle <i>PWMX</i>

Figure 21, Output Compare Architecture



17.8 OUTPUT COMPARE - PWMX SIGNAL PORT MAPPING

Mapping of the timers PWM signal to the port A, B and C terminals.

The port mapping is made in such a way that usually one has the *PWMX* and its complementary output *PWMX_N* available. Using the differential output voltages between *PWMX* and *PWMX_N* the output drive energy increases by a factor 4.

Figure 22, PWMX complementary outputs

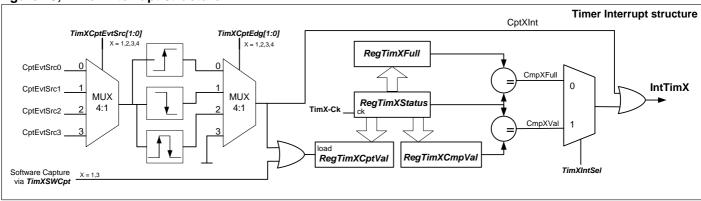
The corresponding port setup must be made to allow the **PWMX** and **PWMX_N** signal to output on the mapped port terminal.

PortA	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7
PWM1		Χ	Х					
PWM_1N							X	
PWM2						X		
PWM_2N	X	Χ						
PWM3						Χ		
PWM_3N	X							
PWM4						Χ		
PWM_4N	Х							

PortC	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7
PWM1								Х
PWM_1N		Х	X				X	
PWM2								
PWM_2N								
PWM3								
PWM_3N		Х						X
PWM4								
PWM_4N		X						

PortB	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
PWM1			X		X			X
PWM_1N				X			Х	
PWM2	Х					Х		
PWM_2N		Χ						
PWM3	Х		Х		Χ	Χ		Χ
PWM_3N		X		X			Х	
PWM4	Х					Χ		
PWM_4N		Χ						

17.9 TIMER INTERRUPTS


Timer interrupts may be generated on hardware capture events, when the timer reaches the compare value and when the timer reaches the full value.

The timer interrupt generation is totally independent of the different timer mode settings.

Interrupt generation when:

- The CmpFull interrupt is only generated when TimXIntSel in register RegTimXCfg is '0', and the counter reaches
 the TimXFull value
- The CmpVal interrupt is only generated when **TimXIntSel** in register **RegTimXCfg** is '1', and the counter reaches the **TimXCmpVal** value
- The capture interrupt is always generated if a valid hardware input capture event is applied to the selected input source.

Figure 23, Timer Interrupt structure

17.10 TIMER REGISTERS

0x003B		RegTimersCfg			Timers Configuration
Bits	Name	Type	ResVal	ResSrc	Description
7	Tim12Chain	RW	0	ResSys	Chain Timer1 & Timer2 into one 16bit Timer
6	Tim34Chain	RW	0	ResSys	Chain Timer3 & Timer4 into one 16bit Timer
5	Tim1AR	RW	0	ResSys	Autoreload mode of Timer1
4	Tim2AR	RW	0	ResSys	Autoreload mode of Timer2
3	Tim3AR	RW	0	ResSys	Autoreload mode of Timer3
2	Tim4AR	RW	0	ResSys	Autoreload mode of Timer4
1	Tim1SWCpt	os	0	ResSys	Timer1/12 SW event for Capture
0	Tim3SWCpt	OS	0	ResSys	Timer3/34 SW event for Capture

0x003	BC	RegTimers	sStart		Timers Start Event Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	Tim1SWStart	STS	0	ResSys	Start/Run Timer1 by SW
6	Tim1Pulse	RW	0	ResSys	1-Start-Stop Timer1 by Event, 0-Enable/Run by active level
5	Tim2SWStart	STS	0	ResSys	Start/Run Timer2 by SW
4	Tim2Pulse	RW	0	ResSys	1-Start-Stop Timer2 by Event, 0-Enable/Run by active level
3	Tim3SWStart	STS	0	ResSys	Start/Run Timer3 by SW
2	Tim3Pulse	RW	0	ResSys	1-Start-Stop Timer3 by Event, 0-Enable/Run by active level
1	Tim4SWStart	STS	0	ResSys	Start/Run Timer4 by SW
0	Tim4Pulse	RW	0	ResSys	1-Start-Stop Timer4 by Event, 0-Enable/Run by active level

0x003D		RegTim	1Cfg		Timer1 Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	Tim1EnPWM	RW	0	ResSys	Enable PWM function of Timer1
6	Tim1IntSel	RW	0	ResSys	0-Int. on Full value, 1-Int. on Compare value
5:3	Tim1SelStart	RW	'000'	ResSys	Start source selection
2:0	Tim1SelClk	RW	'000'	ResSys	Clock source selection

0x003E		RegTim	1CptCmpCf	g	Timer1 Compare & Capture functions configuration	
Bits	Name	Туре	ResVal	ResSrc	Description	
7:6	Tim1CptEdg	RW	'00'	ResSys	Capture event Edge Selection	
5:4	Tim1CptEvtSrc	RW	'00'	ResSys	Capture Event External Source Selection.	
3:2	Tim1CmpFullAct	RW	'00'	ResSys	Action selection on PWM1 when status reaches Load value	
1:0	Tim1CmpValAct	RW	'00'	ResSys	Action selection on PWM1 when status reaches Compare value	

0x00	3F	RegTim1Status			Timer1 Status
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	Tim1Status	RO	0x00	ResSys	Timer1 Status

0x004	40	RegTim1Full			Timer1 Full / End Of Count value
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	Tim1Full	RW	0xFF	ResSys	Timer1 Full / End Of Count value

0x00	41	RegTim1CmpVal			Timer1 Compare Value
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	Tim1CmpVal	RW	0x00	ResSys	Timer1 Compare Value

0x00	42	RegTim1CptVal			Timer1 Captured Value
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	Tim1CptVal	RO	0x00	ResSys	Timer1 Captured Value

0x0043 RegTim2Cfg			Timer2 Configuration		
Bits	Name	Type	ResVal	ResSrc	Description
7	Tim2EnPWM	RW	0	ResSys	Enable PWM function of Timer2
6	Tim2IntSel	RW	0	ResSys	0-Int. on Full value, 1-Int. on Compare value
5:3	Tim2SelStart	RW	'000'	ResSys	Start source selection
2:0	Tim2SelClk	RW	'000'	ResSys	Clock source selection

0x0044		RegTim	2CptCmpCf	g	Timer2 Compare & Capture functions configuration
Bits	Name	Type	ResVal	ResSrc	Description
7:6	Tim2CptEdg	RW	'00'	ResSys	Capture event Edge Selection
5:4	Tim2CptEvtSrc	RW	'00'	ResSys	Capture Event External Source Selection.
3:2	Tim2CmpFullAct	RW	'00'	ResSys	Action selection on PWM2 when status reaches Load value
1:0	Tim2CmpValAct	RW	'00'	ResSys	Action selection on PWM2 when status reaches Compare value

0x0045		RegTim2Status			Timer2 Status
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim2Status	RO	0x00	ResSys	Timer2 Status

0x004	0x0046		ull		Timer2 Full / End Of Count value
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim2Full	RW	0xFF	ResSys	Timer2 Full / End Of Count value

0x004	0x0047 RegTim2CmpVal			Timer2 Compare Value	
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim2CmpVal	RW	0x00	ResSys	Timer2 Compare Value

0x0048		RegTim2CptVal			Timer2 Captured Value
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim2CptVal	RO	0x00	ResSys	Timer2 Captured Value

0x0049		RegTim	3Cfg		Timer3 Configuration
Bits	Name	Type	ResVal	ResSrc	Description
7	Tim3EnPWM	RW	0	ResSys	Enable PWM function of Timer3
6	Tim3IntSel	RW	0	ResSys	0-Int. on Full value, 1-Int. on Compare value
5:3	Tim3SelStart	RW	'000'	ResSys	Start source selection
2:0	Tim3SelClk	RW	'000'	ResSys	Clock source selection

0x004A		RegTim	3CptCmpCf	g	Timer3 Compare & Capture functions configuration
Bits	Name	Type	ResVal	ResSrc	Description
7:6	Tim3CptEdg	RW	'00'	ResSys	Capture event Edge Selection
5:4	Tim3CptEvtSrc	RW	'00'	ResSys	Capture Event External Source Selection.
3:2	Tim3CmpFullAct	RW	'00'	ResSys	Action selection on PWM3 when status reaches Load value
1:0	Tim3CmpValAct	RW	'00'	ResSys	Action selection on PWM3 when status reaches Compare value

0x004B		RegTim3Status			Timer3 Status
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim3Status	RO	0x00	ResSys	Timer3 Status

0x004C		RegTim3Full			Timer3 Full / End Of Count value
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim3Full	RW	0xFF	ResSys	Timer3 Full / End Of Count value

0x004	0x004D		mpVal		Timer3 Compare Value
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim3CmpVal	RW	0x00	ResSys	Timer3 Compare Value

0x004E		RegTim3CptVal			Timer3 Captured Value
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim3CptVal	RO	0x00	ResSys	Timer3 Captured Value

0x004F		RegTim4Cfg			Timer4 Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	Tim4EnPWM	RW	0	ResSys	Enable PWM function of Timer4
6	Tim4IntSel	RW	0	ResSys	0-Int. on Full value, 1-Int. on Compare value
5:3	Tim4SelStart	RW	'000'	ResSys	Start source selection
2:0	Tim4SelClk	RW	'000'	ResSys	Clock source selection

0x005	0x0050		RegTim4CptCmpCfg		Timer4 Compare & Capture functions configuration	
Bits	Name	Type	ResVal	ResSrc	Description	
7:6	Tim4CptEdg	RW	'00'	ResSys	Capture event Edge Selection	
5:4	Tim4CptEvtSrc	RW	'00'	ResSys	Capture Event External Source Selection.	
3:2	Tim4CmpFullAct	RW	'00'	ResSys	Action selection on PWM4 when status reaches Load value	
1:0	Tim4CmpValAct	RW	'00'	ResSys	Action selection on PWM4 when status reaches Compare value	

0x005	0051 RegTim4Status		Timer4 Status		
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	Tim4Status	RO	0x00	ResSys	Timer4 Status

0x005	52	RegTim4Full			Timer4 Full / End Of Count value
Bits	Name	Type	ResVal	ResSrc	Description
7:0	Tim4Full	RW	0xFF	ResSys	Timer4 Full / End Of Count value

0x005	i3	RegTim4CmpVal			Timer4 Compare Value
Bits	Name	Type	Type ResVal ResSrc		Description
7:0	Tim4CmpVal	RW	0x00	ResSys	Timer4 Compare Value

0x005	54	RegTim4CptVal			Timer4 Captured Value
Bits	Name	Type ResVal ResSrc		ResSrc	Description
7:0	Tim4CptVal	RO	0x00	ResSys	Timer4 Captured Value

18. SPI – SERIAL INTERFACE

The circuit contains a synchronous 3-wire (SDI, SDOUT and SCLK) master and slave serial interface. Its ports are mapped on different PA, PB and PC IO terminals.

• SCLK: Serial Clock Input/ Output: Input in Slave mode, Output in Master mode

SDIN: Serial Interface Data Input. Input in Master and Slave mode
 SDOUT: Output in Master and Slave mode

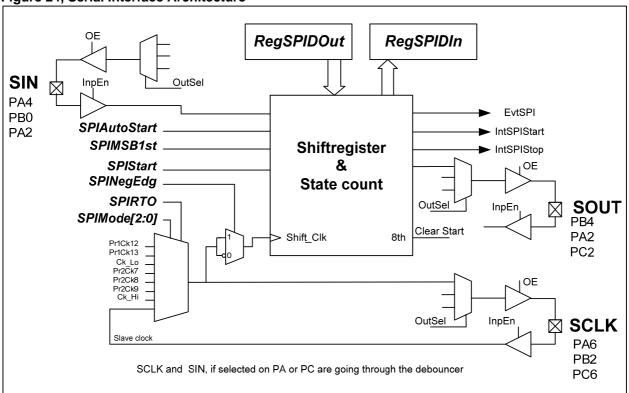
The serial interface always transmits or receives 8-bit packages at a time, followed by an interrupt request allowing the CPU to treat the data.

An Interrupt IntSPIStart is generated at transmission start and an IntSPIStop at the end of the transmission. An Event EvtSPI is generated at transmission start and at the end of the transmission.

The interface may also be used to generate a fix datastream output by using the Auto-Start mode.

The internal shift register clock edge is user selectable; the interface may run on RTZ (Return To Zero) or RTO (Return to One) type of clocks

The full SPI setup shall be configured before enabling the SPI (SPIEn='1'). Once enabled the configuration must not be changes anymore.


While SPIEn is '0', SPIStart is reset. SPIEn must be written '1' before SPIStart is set.

The transmission may start as soon as **SPIStart** is set '1'. Always make first full SPI setup and only at the end set the bit **SPIStart** to '1' to begin the data exchange.

The register **RegSPIDOut** and **RegSPIDIn** act as a buffer for outgoing and incoming data. The **RegSPIDOut** must be written before the transmission starts. The **RegSPIDIn** will be updated after the 8th active clock with the actual received input data.

The transmission direction is configurable with bit **SPIMSB1st**. Set to '1' the first transmission bit is the MSB bit , if set '0' then it is the LSB bit.

Figure 24, Serial Interface Architecture

18.1 SCLK - SPI MASTER/ SLAVE MODE AND CLOCK SELECTION

Master and Slave mode as well as master mode clock selection are done in register RegSPICfg1 bits SPIMode. In Slave mode the serial input clock is coming from PA6, PB2 or PC6 input. The selection depends on SPISeISCIk bits in register RegSPICfg2 and the corresponding port input enable bit must be '1'.

SPIMode	SCLK base clock					
SLAVE Mod	SLAVE Mode SCLK from port inputs					
000	from PA6, PB2 PC6					
Master mo	ode, Prescaler 2 clocks					
001	Ck_Hi					
010	Pr2Ck9					
011	Pr2Ck8					
100	Pr2Ck7					
Master mo	ode, Prescaler 1 clocks					
101	Ck_Lo					
110	Pr1Ck13					
111	Pr1Ck12					

SCLK Slave mode input selection

Input terminal	Input condition	SPIMode[2:0]
	Slave Mode	
PA6	SPISeISCIk='00' PA6InpE='1'	000 (slave)
PB2	SPISeISCIk='01' PB2InpE='1'	000 (slave)
PC6	SPISeISCIk='10' PC6InpE='1'	000 (slave)
PA6	SPISeISCIk='11' PA6InpE='1'	000 (slave)

SCLK Master mode output selection

OCEN Master mode output selection						
Output terminal	Output condition					
	Master Mode					
PA6	PA6OutSel[1:0]='01' PA6OE='1'					
PB2	PB2OutSel[1:0]='01' PB2OE='1'					
PC6	PC6OutSel[1:0]='01' PC6OE='1'					

The used PA, PB and PC IO port terminals must be set up for SPI before **SPIStart** is set high.

Following table shows the different SCLK clock possibilities RTZ and RTO with the internal shift clock dependencies.

4	Tollowing table shows the different Coeff Glook possibilities 1712 and 1710 with the internal shift die							
	SPIRTO	SPINegEdg	SCLK pulse	SCLK IDLE value	ShiftEdge	Clock type	Example on SCLK	
	0	0	High Pulse	High	Pos edge	RTZ	RTZ, pos edge	
	0	1	High Pulse	High	Neg edge	RTZ	RTZ, neg edge	
	1	0	Low pulse	Low	Pos edge	RTO	RTO, pos edge	
	1	1	Low pulse	Low	Neg edge	RTO	RTO, neg edge	

SPIRTO defines a RTZ clock type if set to '1' or RTO clock type if set to '0'

SPINegEdg defines the internal shift register shift clock edge, set to '1' shift takes place on the negative SCLK clock edge. Set to '0', the shift will take on the positive SCLK clock edge. Both bits are placed in register RegSPICfg1.

18.2 SIN PORT MAPPING

The serial data input may come from PA4, PB0 or PA2. On PA2 and PA4 the debounced signal **PADeb**2 or **PADeb4** is used as serial data input, from PB0 it is directly the pad input while the input enable is high.

The data shifted in through SIN terminal will be stored into the buffer register **RegSPIDIn** after the 8th shift clock.

MSB or LSB first on the SIN reception is selected with bit **SPIMSB1st**.

Input terminal	Input condition
PA4	SPISeISIN[1:0]='00' PA4InpE='1'
PB0	SPISeISIN[1:0]='01' PB0InpE='1'
PA2	SPISeISIN[1:0]='10' PA2InpE='1'
PA4	SPISeISIN[1:0]='11' PA4InpE='1'

18.3 SOUT PORT MAPPING

The serial data output is mapped on PB4, PA2 or PC2. The corresponding port output must be setup by the corresponding port output selection bits as SDOUT output with its output enable high.

The data to be shift out must be written into the output buffer register **RegSPIDOut** before the transmission is started.

MSB or LSB first on the SOUT transmission is selected with bit **SPIMSB1st**.

Output terminal	Output condition
PB4	PB4OutSel[1:0]='01' PB4OE='1'
PA2	PA2OutSel[1:0]='01' PA2OE='1'
PA7	PA7OutSel[1:0]='01' PA7OE='1'
PC2	PC2OutSel[1:0]='01' PC2OE='1'

18.4 SPI START - STOP

In master mode writing *bit* **SPIStart**='1' will launch the transmission when it goes high and SPIEn='1'. After the 8th active SCLK clock edge the **SPIStart** will be forced low. SPISart can be used as a stuss register to momitor ongoing transmission.

Writing '0' to **SPIStart** during the transmission will stop the SPI. In this case the content of **RegSPIDIn** is not guaranteed.

Note:

Chipselect handling for master mode shall be handled by the user software on any user defined PA, PB or PC output.

In slave mode, the transmission starts as soon as the 1st clock pulse occurs after SPIStart was written '1'.

Note:

In slave mode, for the synchronization, the user can generate a flag by software on a terminal to indicate to the master that the SPI is ready.

18.5 AUTO-START

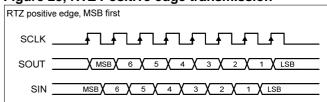
With Auto-Start one can transmit several 8-bit packages without any delay between the packages. As such it allows generating a fix datastream output. The bit **SPIAutoStart** needs to be high to allow Auto-Start

For Auto-Start to take place one needs to write the next package data into the **RegSPIDOut** during the ongoing transmission. The SPIStart will in this case stay high after the 8th active clock edge and the new transmission will follow immediately after.

All interrupts *IntSPIStart*, *IntSPIStop* and the event *EvtSPI* are generated also in Auto-Start mode.

If the bit **SPIAutoStart** is at '0', the auto start mode is be disabled, writing to **RegSPIDOut** during the transmission will have no effect.

18.6 RTZ POSITIVE EDGE TRANSMISSION


With RTZ (Return To Zero) positive edge transmission the SCLK clock is low between successive transmissions.

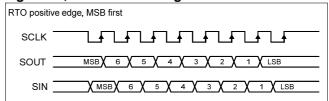
The SOUT data will change on the on the rising SCLK clock edge. The 1st bit of data SPIDout data will be shift out on the rising edge of the 1st SCLK clock and the last on the 8th SCLK clock rising edge.

The SIN data must be stable at the SCLK rising edge to be properly shifted in, the buffer RegSPIDIn will be updated with the received data at the rising edge of the 8th shift clock.

An interrupt request IntSPIStart and an event EvtSPI are generated by the rising edge of the 1st SCLK clock. An interrupt request IntSPIStop and an event EvtSPI are generated by the rising edge of the 8th SCLK clock.

Figure 25, RTZ Positive edge transmission

18.7 RTO POSITIVE EDGE TRANSMISSION


With RTO (Return To One) positive edge transmission the SCLK clock is high between successive transmissions.

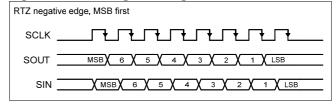
The 1st bit contains in RegSPIDOut will be on SOUT before the first transmission if SPIEn = '1' or on the falling edge of the 7th SCLK pulse after the transmission. The 2nd bit contains in **RegSPIDOut** will be shifted out on the rising edge of the 1st SCLK pulse. The 8th bit contained in **RegSPIDOut** will be shifted out on the rising edge of the 7th SCLK pulse.

SIN data must be stable on the rising edge of SCLK to be properly aguired and shifted.

The buffer register RegSPIDIn will be updated with the received data on the rising edge of the 8th SCLK clock. An interrupt request IntSPIStart and an event EvtSPI are generated by the rising edge of the 1st SCLK clock. An interrupt request IntSPIStop and an event EvtSPI are generated by the rising edge of the 8th SCLK clock.

Figure 26, RTO Positive edge transmission

18.8 RTZ NEGATIVE EDGE TRANSMISSION


With RTZ (Return To Zero) negative edge transmission the SCLK clock is low between successive transmissions.

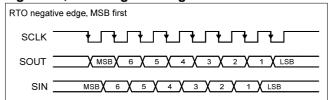
The 1st bit contains in RegSPIDOut will be on SOUT before the first transmission if SPIEn = '1' or on the falling edge of the 7^{th} SCLK pulse after the transmission. The 2^{nd} bit contains in **RegSPIDOut** will be shifted out on the falling edge of the 1st SCLK pulse. The 8th bit contains in RegSPIDOut will be shifted out on the falling edge of the 7th SCLK pulse.

SIN data must be stable on the falling of SCLK to be properly aquired and shifted.

The buffer register RegSPIDIn will be updated with the received data on the falling edge of the 8th SCLK clock. An interrupt request IntSPIStart and an event EvtSPI are generated by the falling edge of the 1st SCLK clock. An interrupt request IntSPIStop and an event EvtSPI are generated by the falling edge of the 8th SCLK clock.

Figure 27, RTZ Negative edge transmission

18.9 RTO NEGATIVE EDGE TRANSMISSION


With RTO (Return To One) negative edge transmission the SCLK clock is high between successive transmissions.

The SOUT data will change on the on the falling SCLK clock edge. The 1st bit of data SPIDout data will be shift out on the falling edge of the 1st SCLK clock and the last on the 8th SCLK clock falling edge.

The SIN data must be stable at the SCLK falling edge to be properly shifted in, the buffer **RegSPIDIn** will be updated with the received data at the falling edge of the 8th shift clock.

An interrupt request *IntSPIStart* and an event *EvtSPI* are generated by the falling edge of the 1st SCLK clock. An interrupt request *IntSPIStop* and an event *EvtSPI* are generated by the falling edge of the 8th SCLK clock.

Figure 28, RTO Negative edge transmission

Note:

The SPI signals has the following setup and hold time parameters:

Conditions: VSUP = 2.0 V, Temp = -40°C to 85°C, external Cload on pad = 30 pF SCLK frequency, port A and C fspiac max 8 MHz SCLK frequency, port B fspib max 10 MHz SIN setup time, slave mode tsusins min 6 ns

SIN setup time, master mode tsusinm min 29 ns (portA,C), min 25ns (port B)

SIN hold time thdsin min 5 ns

SOUT delay_time Tdelsouτ max 32ns (port A, C), max 26ns (port B)

Above values are not verified on production testing.

18.10 SPI REGISTERS

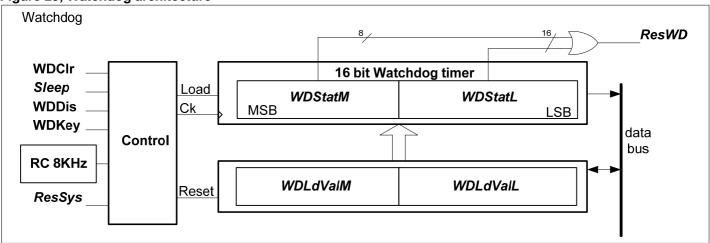
0x007A		RegSPIC	Cfg1		SPI Configuration - 1
Bits	Name	Type	ResVal	ResSrc	Description
7	SPIEn	RW	0	ResSys	SPI Enable
6:4	SPIMode	RW	'000'	ResSys	SPI Mode and SCIk selection
3	SPINegEdg	RW	0	ResSys	SPI active on Negative Edge
2	SPIRTO	RW	0	ResSys	SPI RTO (Return To One)
1	SPIMSB1st	RW	1	ResSys	SPI MSB First
0	SPIAutoStart	RW	1	ResSvs	SPI Auto Start Enabled

0x007B		RegSPICfg2			SPI Configuration - 2
Bits	Name	Туре	ResVal	ResSrc	Description
7:6	SPISelSClk	RW	'00'	ResSys	SPI SCIk Selection
5:4	SPISelSIn	RW	'00'	ResSys	SPI SIn Selection
3:0	-	NI	-	-	Not implemented

0x007C RegSPIStart		SPI Start			
Bits	Name	Туре	ResVal	ResSrc	Description
7	SPIStart	STS	0	ResSys	SPI Start
6:0	-	NI	-	-	Not implemented

0x007D RegSPIDIn			SPI Received Data		
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	SPIDIn	RO	0x00	ResSys	SPI Received Data

0x007	'E	RegSPIDOut			SPI Data to Transmit
Bits	Name	Туре	Type ResVal ResSrc		Description
7:0	SPIDOut	RW	0x00	ResSys	SPI Data to Transmit



19. WATCHDOG

The function of the watchdog is to generate a reset **ResSys** and **ResAna** by asserting the **ResWD** signal if during a given timeout period the CPU did not clear the WD counter (**WDClear**).

It therefore uses a 16-bits counter that counts down from start (**RegWDLdVaIM** (MSB) and **RegWDLdVaIL** (LSB)) value down to 0x0000. The counter uses directly the RC 8 KHz clock. This RC clock is always enabled together with the watchdog. Refer also to chapter Oscillator and Clock selection for the RC 8 KHz clock.

Figure 29, Watchdog architecture

19.1 WATCHDOG CLEAR

The software writes '1' to the one shot register **RegWDCfg** bit **WDClear** to avoid watchdog reset, at the same time the counter will reload the initial start value given by registers **RegWDLdValM** and **RegWDLdValL**.

If the counter reaches 0x0000 and **WDDis** = '0' then signal WatchDog timeout **ResWD** will be asserted.

The watchdog counter status can be read in registers **RegWDStatM** (MSB) and **RegWDStatL** (LSB). *Note:*

Due to asynchronous domain crossing the SW may read the status during its change i.e. a nonsense value. Only two consecutive reads of the same stable value can assure about its correctness if the WD is running.

The occurrence of a watchdog reset can be read in the rest flag register RegResFlag bit ResFlagWD.

The timeout, based on the 8 KHz RC oscillator can be set as high as 8.2s (load value of 0xFFFF) with a LSB value of typical 125us. The default load value of 0x8000 corresponds to 4.1 secondes

19.2 WATCHDOG DISABLING

If the register **RegWDKey** contains the value (*watch_dog_key* = 0xCA) it becomes possible to disable the WD by writing '1' to register **RegWDCfg** bit **WDDis**.

If **RegWDKey** contains the watchdog a value <> 0xCA it will be impossible possible to disable the WD, register **RegWDCfg** bit **WDDis** will be forced low.

The WatchDog counter is disabled in Sleep mode and if RegWDCfg.WDDis = '1' while watch_dog_key is valid.

The counter will reload the start value when started and/or re-enabled.

Note:

The WatchDog Clear may take up to 3 WD clocks (~375 us).

The WatchDog Start-up may take up to 4 WD clocks (~500 us).

Any change in RegWdLdValM or RegWdLdValL during this time will affect the WD Counter value.

19.3 WATCHDOG REGISTERS

0x000	0x0006		g		Reset Flags
Bits	Name	Туре	ResVal	ResSrc	Description
7	ResFlgPA	ResFlg	0	PorLog	Flag Reset from Port-A
6	ResFlgWD	ResFlg	0	PorLog	Flag Reset from WatchDog
5	ResFlgBO	ResFlg	0	PorLog	Flag Reset from Brown-Out
4	ResFlgGasp	ResFlg	0	PorLog	Flag Reset from GASP
3	ResFlgBE	ResFlg	0	PorLog	Flag Reset from CoolRisc Bus-Error
0	LckPwrCfg	RW	0	Por	Lock configurations to be kept in Power-Down mode

0x006D RegWDCfg			WatchDog Configuration		
Bits	Name	Type	ResVal	ResSrc	Description
7	WDDis	RW	0	ResSys	WatchDog Disable
0	WDClear	OS	0	_	WatchDog Clear - Restart Counting

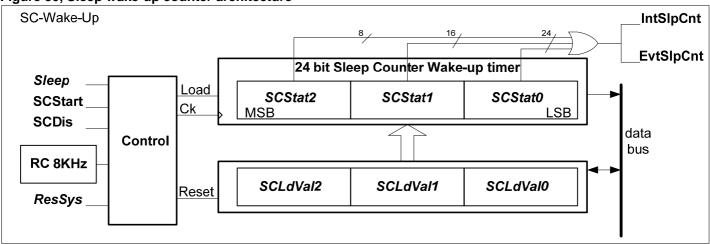
0x006	0x006E RegWDKey		WatchDog Key (0xCA) for disabling		
Bits	Name	Туре	Type ResVal ResSrc		Description
7:0	WDKey	RW	0x00	ResSys	WatchDog Key (0xCA) for disabling

0x006	0x006F RegWDLdValL		WatchDog Start/Load value LSB		
Bits	Name	Туре	Type ResVal ResSrc		Description
7:0	WDLdValL	RW	0x00	ResSys	WatchDog Start/Load value LSB

0x007	70	RegWDLdValM			WatchDog Start/Load value MSB
Bits	Name	Туре	Type ResVal ResSrc		Description
7:0	WDLdValM	RW	0x80	ResSys	WatchDog Start/Load value MSB

0x007	0x0071 RegWDStatL		WatchDog Status LSB		
Bits	Name	Type	Type ResVal ResSrc		Description
7:0	WDStatL	RO	0x00	ResSys	WatchDog Status LSB

0x007	72	RegWDStatM			WatchDog Status MSB
Bits	Name	Туре	Type ResVal ResSrc		Description
7:0	WDStatM	RO	0x80	ResSys	WatchDog Status MSB


20. SLEEP COUNTER WAKE-UP

The SC wake-up function generates a timeout which may be used as a sleep wake-up or as an asynchronous interrupt or event generation timer in active or standby mode. The max delay is 35min, programmable in 125us steps. When the timeout is reached an interrupt *IntSIpCnt* or event *EvtSIpCnt* will be asserted. If the circuit was in sleep mode the interrupt or event will wake it up and software execution will start, if the circuit was in active or standby mode it will interpret the interrupts or events excecute the instruction code.

In order to wake-up from sleep or to see the interrupt or event the corresponding interrupt and event must not be masked.

The SCWU uses a 24-bit counter down counter running on the internal RC 8 KHz oscillator.

Figure 30, Sleep wake-up counter architecture

The counter state shall be readable by registers RegSCStat2 (MSB), RegSCStat1 and RegSCStat0.

Note:

Due to asynchronous domain crossing the SW may read the status during its change i.e. a nonsense value. Only two consecutive reads of the same stable value can assure about its correctness if the SC is running.

Note:

As sleep counter is a state machine running at low frequency, two consecutive actions from CPU on sleep-counter as stop or start shall be separated by at least 2.5 ms delay.

Once the counter reaches 0x000000 value then *IntSlpCnt* and *EvtSlpCnt* will be asserted regardless of the mode. The counting is stopped.

20.1 SC WAKE-UP ENABLING

The counter can only start when SCDis='0' (enabled).

If SCDis = '0' the counter starts automatically when system enters in sleep mode. When the counter starts it will first load the **RegSCLdVal2,1,0** and then downcount from the loaded value. The current counter value can be read in the status registers **RegSCStat2,1,0**. The default load value is 0x008000 which corresponds to a timeout of 4.1s. An active SC wake-up will automatically switch on the internal RC 8 kHz oscillator.

SCStart can be used to trim the SC in active mode. Charge sharing effects influence the SCWKUP timing slightly when going into Sleep mode. Resulting timings are therefore up to 2.2ms longer than expected.

Note:

SCStart shall not be set to '1' before going in sleep mode it shall be used only in active mode to trim the sleep counter wake-up delay.

20.2 SC WAKE-UP DISABLING

If **SCDis** = '1' the counter will be disabled regardless of the mode.

The counter will stop when **SCStart** is set to '0' or after Sleep mode wake-up. Once stopped, the counter will keep its current value.

The SC wake-up function is reset by ResSys.

Note.

Due to asynchronous domain crossing the reload and following start takes 2-3 SC clocks (~250-375 us).

Note:

If in sleep mode system is woke-up by another source as SC wake-up (by PortA) before SC reaches 0x000000 then the SC needs 2-3 clocks cycle before stopping. If system enter again in sleep mode before proper SC stop, SC do not reload **RegSCLdVAI2,1,0** then SC delay is shorter than expected.

20.3 SC WAKE-UP REGISTERS

0x0073		RegSCCfg			SleepCounter Configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	SCDis	RW	0	ResSys	SleepCounter Disable
6	SCStart	RW	0	ResSys	SleepCounter Start/Run
5:0	-	NI	-	-	Not implemented

0x0074		RegSCLdVal0			SleepCounter Start/Load value B0-LSB
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	SCLdVal0	RW	0x00	ResSys	SleepCounter Start/Load value B0-LSB

0x0075		RegSCLdVal1			SleepCounter Start/Load value B1	
Bits	Name	Туре	ResVal	ResSrc	Description	
7:0	SCLdVal1	RW	0x80	ResSys	SleepCounter Start/Load value B1	

0x0076		RegSCLdVal2			SleepCounter Start/Load value B2-MSB
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	SCLdVal2	RW	0x00	ResSys	SleepCounter Start/Load value B2-MSB

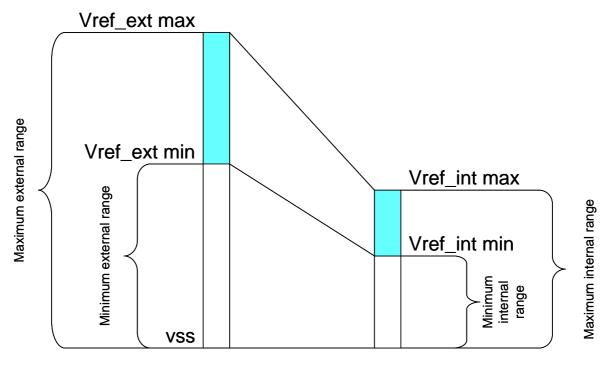
0x0077		RegSCStat0			SleepCounter Status B0-LSB
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	SCStat0	RO	0x00	ResSys	SleepCounter Status Byte0-LSB

0x007	0x0078		t1		SleepCounter Status B1
Bits	Name	Type	ResVal	ResSrc	Description
7:0	SCStat1	RO	0x80	ResSys	SleepCounter Status Byte1

0x0079		RegSCStat2			SleepCounter Status B2-MSB
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	SCStat2	RO	0x00	ResSys	SleepCounter Status Byte2-MSB

21. 10-BITS ADC

Two blocks compose the ADC:


- The conditioner
- The ADC converter

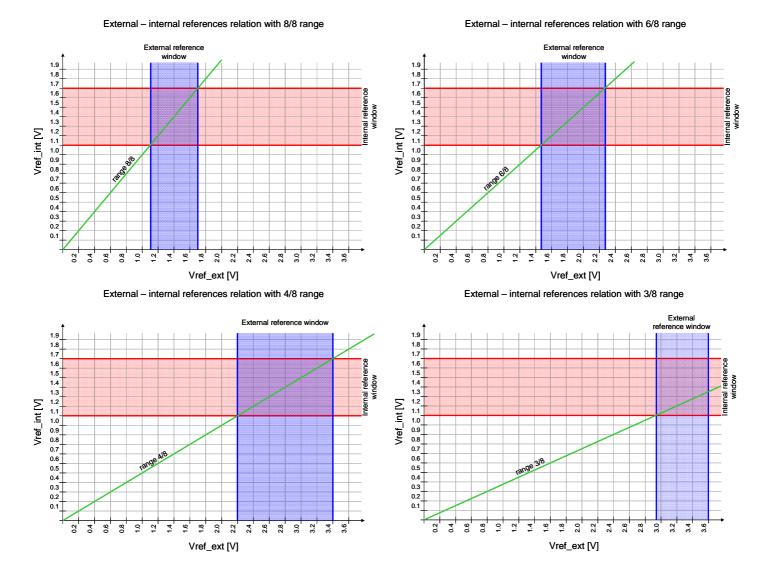
The conditioner allows sampling different range of analog inputs even signal having a dynamic higher than VSUP. It consists to decrease the reference and the analog input in a range adapted for the ADC converter.

21.1 CONDITIONER

21.1.1 RANGE SELECTION

It consists to attenuate the external analog input range and external reference. It is used to adapt external range to internal range limited to maximum 1.7V as illustrated in the following diagram.

Vref_ext max: Maximum external rangeVref_ext min: Minimum external rangeVref_int max: Maximum internal range = 1.7VVref_int min: Minimum internal range = 1.1V


External reference and attenuation factor called range shall be calculated to get an internal reference in a window of 1.1V to 1.7V. There is another condition to fullfil; the maximum external reference shall not be above VSUP if VSUP > VREG. If VSUP < VREG the maximum external reference is 1.7V.

There are 4 possible ranges. The factor shall be chosen to get an internal reference in the window of 1.1V to 1.7V according to the following table:

Range	Vref_ext min	Vref_ext max
8/8	1.10 V	1.70 V
6/8	1.47 V	2.27 V
4/8	2.20 V	3.40 V
3/8	2.93 V	3.60 V ₍₁₎

(1) The maximum external range is limitated by maximum power supply 3.6V

The selection of the attenuation factor is done with ADCSelRange[1:0] in the register RegADCCfg2[5:4].

ADCSelRange[1:0]	Attenuation factor
00	8/8
01	6/8
10	4/8
11	3/8

21.1.2 REFERENCE SELECTION

There are three different possible references selectable with ADCSelRef[1:0] in the register RegADCCfg2[7:6].

ADCSelRef[1:0]	reference	origin
00	VBGR	Internal reference
01	VREF_EXT	PA2
10	VSUP	Main supply VSUP
11	unused	-

When external reference VREF_EXT is used, PA[2] shall be configured in analog mode: **RegPAOE[2]** = '0', **RegPAPU[2]** = '0' and **RegPAPD[2]** = '0'.

Note:

Always allow the reference voltage to stabilize before starting an ADC measure. When running on the internal reference this stabilization time is 130us from ADCEn until stable reference voltage. It is possible to start the reference prior to enabling of the ADC, refer to 24.

21.1.3 ANALOG INPUT SELECTION

There are 9 possible analog inputs selectable with ADCSelSrc[2:0] in register ADCOut1[6:4]. When the temperature sensor is active (EnTempSens in register RegADCCfg1[4] = '1') the temperature sensor is automatically set as ADC analog input. StsTempSens in register RegADCOut1[3] is a copy of EnTempSens and is not writable. It allows checking if the temperature sensor is enable at each read of ADC data output.

EnTempSens	ADCSelSrc[2:0]	ADC source
0	000	PA0
0	001	PC0
0	010	PA1
0	011	PC1
0	100	PA2
0	101	PC2
0	110	PA3
0	111	PC3
1	XXX	temperature sensor

21.2 ADC OFFSET TRIM SELECTION

Depending on the ADC configuration or if the ADC is used with the temperature sensor, the ADC offset shall be set differently. When the internal voltage is used, the ADC range selection has effect only on the analog input signal. Then the offset has to be adapted to the selected range. There is also a dedicated offset trim word used when the analog input is the temperature sensor in order to remove the offset error introduced by the sensor itself.

All these trimming words are contained in the row 62 sector 5 of the NVM (refer to the chapter 3.6). The offset trim to use according to the configuration is as follows:

ADC configuration	ADC offset trim	DM address
ADC ref = internal Vref	ADCOffsetRng3_8[10:0]	MSB 0x6FD1[10:8]
Range 3/8	ADCONSERRINGS_6[10.0]	LSB 0x6FD0[7:0]
ADC ref = internal Vref	ADCOffsetRng4_8[10:0]	MSB 0x6FCF[10:8]
Range 4/8	ADCONSERRING4_6[10.0]	LSB 0x6FCE[7:0]
ADC ref = internal Vref	ADCOffsetRng6_8[10:0]	MSB 0x6FCD[10:8]
Range 6/8	ADCOnsettingo_8[10.0]	LSB 0x6FCC[7:0]
Tomporeture concer	ADCOffsetTemp[10:0]	MSB 0x6FC9[10:8]
Temperature sensor	ADCOnserremp[10.0]	LSB 0x6FC8[7:0]
All other configurations	ADCOffsetRng8_8[10:0]	MSB 0x6FCB[10:8]
All other configurations	ADCONSERVINGS_6[10.0]	LSB 0x6FCA[7:0]

The trimming word has to be copied from the NVM to the related registers: MSB in **RegADCOffsetM** DM address 0x005A and LSB in **RegADCOffsetL** DM address 0x0059.

Note: ADC offset is coded and memorized in NVM on 11 bits. Their value can be above 0x3FF.

ADC configurations

21.2.1 RUNNING MODE

The 6819 ADC has two possible running modes:

- Continuous mode: the ADC runs continuously until the software stopps it.
- One shot mode: the ADC makes just one single acquisition.

To start the ADC in continuous mode, **RunContMeas** in register **RegADCCfg1[6]** shall be set at '1'. To start a single sample, **RunSinglMeas** in register **RegADCCfg1[5]** shall be set at '1'. Continuous mode has the priority over single measurement.

Always fully define the ADC setup before starting any ADC measurement.

21.2.2 ADC ENABLING

Before to start an acquisition, **EnADC** in register **RegADCCfg1[7]** shall be set at '1'. When the ADC is stopped in continuous mode, **EnADC** shall be set at '0' before to launch any other acquisition otherwise all next measurement will be corrupted.

Note:

EnADC will also enable the bandgap reference voltage. If the BGR is used as ADC reference the user must wait for the BGR to stabilize before starting any measurement. Refer to 24.

If an external reference is used or the BGR was already enabled before - and is stabilized - still allow 5us setup time from EnADC to start of measuring.

21.2.3 ADC SAMPLING RATE

The ADC can select 8 different sampling rates. ADC is running on **Ck_Hi** whatever the clock configuration. When the CPU and the Prescalers are not running on **Ck_Hi**, the clock for ADC shall be forced. Meaning that **FrcEnRC15M** or **FrcEnRC2M** or **FrcEnExt** shall be forced at '1' and **Ck_Hi** shall be connected to the clock source forced.

The maximum sampling rate of the ADC is 100kS/s, the ADC needs 22 clocks for each sample, than the maximum selectable ADC frequency is 2.2MHz. The clock selection is done with **ADCSmplRate[2:0]** in register **RegADCCfg1[3:1]**. Following table shows the relation between the clock source selection and the sampling rate.

ADCSmplRate[2:0]	Clock division		Sampling rate kS/s				
ADCSIIIpikate[2.0]	factor	<i>Ck_Hi</i> = 15MHz	<i>Ck_Hi</i> = 2MHz	Ck_Hi = 4MHz Xtal			
000	1 (default)	denied	90.91	denied			
001	2	denied	45.45	90.91			
010	4	denied	22.73	45.45			
011	8	83.78	11.36	22.73			
100	16	41.89	5.68	11.36			
101	32	20.95	2.84	5.68			
110	64	10.47	1.42	2.84			
111	1	denied	90.91	denied			

The first conversion shall be ignored. Then in single mode the conversion need 44 clocks. This is automatically managed by the 6819, the event is generated only after the second conversion. Following table shows the relation between the conversion duration and the clock source selection.

ADCSmnIPata[2:0]	Clock division factor		Conversion duration us						
ADCSIIIpiRate[2.0]			<i>Ck_Hi</i> = 2MHz	Ck_Hi = 4MHz Xtal					
000	1 (default)	denied	22.00	denied					
001	2	denied	44.00	22.00					
010	4	denied	88.00	44.00					
011	8	23.87	176.00	88.00					
100	16	47.74	352.00	176.00					
101	32	95.49	704.00	352.00					
110	64	190.97	1408.00	704.00					
111	1	denied	22.00	denied					

21.2.4 LOW NOISE MODE

There is two way to decrease the noise due to activity of 6819:

- Force DC-DC in idle mode for a short time.
- Make ADC acquisition only when the CPU is in halt mode.

When the DC-DC is used, it is possible to stop it for a short time by setting **DC-DCIdle** in register **RegDC-DCCfg[4]** at '1'. In this case the only source of energy is the external capacitor. Then it is recommended to ensure that no big consumer is working when the DC-DC is in idle mode (refer to DC-DC chapter). As soon as the ADC convertion is done the **DCDIdle** shall be set at '0' again. The ADC should be used only in one shot mode in this case to recharge the external capacitor between between each ADC acquisition.

ADC low noise mode consists to start the ADC convertion only when the CPU is in stand by mode by setting **ADCLowNoise** in register **RegADCCfg2[3]** at '1'. The CPU is waked up by ADC event or ADC interrupt when the convertion is done and ADC result available if they are unmasked.

21.2.5 8BIT ADC SELECTION

It is possible to set the size of the ADC result between 10 or 8-bits. If high precision is not required, it allows simplifying the software as the data are in 8bit. In this case two LSB bits are lost. The other bits are shifted in register RegADCOut0[7:0]. In 10-bits mode the result is split in registers RegADCOut1[1:0] (2 MSB bits) and RegADCOut0[7:0] (8 LSB bits).

21.3 ADC ACQUISITION SEQUENCE

The ADC generates an interrupt or an event when the acquisition is done and the result available for CPU. Thank to the event it is possible to force the CPU in std-by mode, the event wake-up the CPU automatically when the ADC result is available. It allows in continuous saving time because the CPU does not need to go through the handler. It is also possible to react by polling the event with conditional jump JEV.

Int0StsADC in register **RegInt0Sts[4]** is the interrupt generated at the end of each acquisition. **Evt1StsADC** in register **RegEvtSts[1]** is the event generated at the end of each acquisition.

The ADC result is available in registers RegADCOut1[1:0] (2 MSB bits) and RegADCOut0[7:0] (8 LSB bits). To ensure that a new acquisition between reading RegADCOut1[1:0] and RegADCOut0[7:0] does not corrupt the ADC result, RegADCOut0[7:0] is stored in a shadow register when RegADCOut1[1:0] is read. Both registes are read in fact exactly in the same time. RegADCOut1[1:0] shall always be read first.

RegADCOut1.ADCOutLSB is the 11th bits result LSB and it is not guaranteed.

The bit **ADCBusy** in read-only register **RegADCOut1[7]** is at '1' when the ADC is working. It allows detecting the end of acquisition in one shot mode by polling.

21.4 ADC REGISTERS

0x0055 RegADCCfg1		ADC Configuration - 1			
Bits	Name	Type	ResVal	ResSrc	Description
7	EnADC	RW	0	ResSys	Enable ADC Block
6	RunContMeas	RW	0	ResSys	Run Continues measurement
5	RunSinglMeas	STS	0	ResSys	Run/Start Single measurement
4	EnTempSens	RW	0	ResSys	Enable Temperature Sensor
3:1	ADCSmplRate	RW	'000'	ResSys	ADC Sample Rate setup - continues mode.
0	ADC8bit	RW	0	ResSys	ADC 8bit Result mode

0x005	56	RegADCCfg2			ADC Configuration - 2	
Bits	Name	Туре	ResVal	ResSrc	Description	
7:6	ADCSelRef	RW	'00'	ResSys	ADC Reference selection	
5:4	ADCSelRange	RW	'00'	ResSys	ADC Range selection	
3	ADCLowNoise	RW	0	ResSys	ADC Low noise measurement mode	
2:0	-	NI	-	-	Not implemented	

0x005	57	RegADCOut0			ADC Output-0 (LSB)
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	ADCOut0	RO	0x00	ResSys	ADC Output-0: 10bit=LSB(8:1), 8bit-(10:3)

0x005	x0058 RegADCOut1		ADC Output-1 (MSB)		
Bits	Name	Туре	ResVal	ResSrc	Description
7	ADCBusy	RO	0	ResSys	ADC in progress
6:4	ADCSelSrc	RW	'000'	ResSys	ADC Input Source selection
3	StsTempSens	RO	0	ResSys	Enable Temperature Sensor Status
2	ADCOutLSB	RO	0	ResSys	ADC Output HW-LSB(0)
1:0	ADCOut1	RO	'00'	ResSys	ADC Output-1: 10bit-MSB(10:9), 8bit-N/A

0x005	i9	RegADCOffsetL			ADC Offset LSB (7:0)
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	ADCOffsetL	RW	0x00	ResSys	ADC Offset LSB (7:0)

0x005	0x005A RegADCOffsetM		ADC Offset MSB (10:8)		
Bits	Name	Туре	ResVal	ResSrc	Description
7:3	-	NI	-	-	Not implemented
2:0	ADCOffsetM	RW	'100'	ResSys	ADC Offset MSB (10:8)

22. TEMPERATURE SENSOR

22.1 TEMPERATURE SENSOR ENABLING

The temperature sensor is enabled when **EnTempSens** in register **RegADCCfg1** is written at '1'. When the temperature sensor is enabled it is automatically selected by the ADC as input source. Read-only bit **StsTempSens** in register **RegADCOut1** is a copy of **EnTempSens**. Thank to it the status of temperature sensor is given on each ADC result read access.

22.2 TEMPERATURE SENSOR REGISTERS

0x005	0x0055 RegADCCfg1		ADC Configuration - 1		
Bits	Name	Туре	ResVal	ResSrc	Description
7	EnADC	RW	0	ResSys	Enable ADC Block
6	RunContMeas	RW	0	ResSys	Run Continues measurement
5	RunSinglMeas	STS	0	ResSys	Run/Start Single measurement
4	EnTempSens	RW	0	ResSys	Enable Temperature Sensor
3:1	ADCSmplRate	RW	'000'	ResSys	ADC Sample Rate setup - continues mode.
0	ADC8bit	RW	0	ResSys	ADC 8bit Result mode

0x0058 RegADCOut1		ADC Output-1 (MSB)			
Bits	Name	Туре	ResVal	ResSrc	Description
7	ADCBusy	RO	0	ResSys	ADC in progress
6:4	ADCSelSrc	RW	'000'	ResSys	ADC Input Source selection
3	StsTempSens	RO	0	ResSys	Enable Temperature Sensor Status
2	ADCOutLSB	RO	0	ResSys	ADC Output HW-LSB(0)
1:0	ADCOut1	RO	'00'	ResSys	ADC Output-1: 10bit-MSB(10:9), 8bit-N/A

Note:

Temperature sensor calibration values are stored in row 62 sector 5 as described in chapter 3.6. Temperature tolerances of production test are described in chapter 3.6.1.

When EnTempSens is written at '1' it is necessary to wait 10ms before to launch an ADC acquisition.

DC/DC CONVERTER **23**.

The DC-DC converter allows supplying the chip and external elements on the board using a low voltage supply source. The DC-DC converter is not enabled by default but by the software. 6819 is able to start-up with a low voltage supply using the internal voltage multiplier. As the voltage multiplier is not able to deliver more than 100uA, it is recommended to enable the DC-DC before to enable the big consumers.

23.1 DC/DC ENABLING

Enable the DC-DC consists to write '1' in EnDC-DC in register RegDC-DCCfg[7]. During the start-up phase of DC-DC the read-only bit DC-DCStartSts in RegDC-DCCfg[3] is at '1'. The current driven shall not exceed 10mA during the start-up phase.

23.2 DC/DC VOLTAGE SELECTION

There are 4 target voltages selectable with DC-DCLevel[1:0] in register RegDC-DCCfg[6:5]. It is possible to change the voltage level of DC-DC on the fly while DC-DC is enabled but when the voltage rise up the current driven shall not exceed 10mA.

DC-DCLevel[1:0]	Voltage level
0x00	2.1
0x01	2.5
0x10	2.9
0x11	3.3

23.3 DC/DC LOW NOISE MODE

The noise level generated by the DC-DC converter can possibly influence precise voltage monitoring on VLD and ADC. To avoid such noise influence the DC-DC converter can be put in IDLE mode during such measurements. The IDLE duration is purely software controlled.

Writing '1' in DC-DCIdle in register ReqDC-DCCfq[4] force the DC-DC off, in this mode the external capacitance becomes the only source of energy. Then the big consumer shall be switched off when **DC-DCIdle** is set to '1'.

It is recommended to use the VLD to supervise **VSUP** and switch the DC-DC on when the supply is to low. The time the DC-DC can be in idle is related to the maximum voltage drop on VSUP, the external capacitor value and the current consumption as follows.

Delay in idle mode $T_{DC\text{-}DCIdle}$: C_{ext}: External capacitor value

 $T_{DCDCIdle} = \frac{C_{EXT} \cdot \Delta VSUP}{I_{SUP}}$ ΔVSUP: Drop on VSUP Current consumption on VSUP SUP:

Note:

The DC-DC – Step-Up converter does not allow Voltage down conversion.

23.4 DC-DC REGISTER

	0x005D	R	RegDC-DCCfg		DC-DC Configuration
Bits	Name	Type	ResVal	ResSrc	Description
7	EnDC-DC	RW	0	ResAna	Enable DC-DC
6:5	DC-DCLevel	RW	'00'	ResAna	Select DC-DC Output Level
4	DC-DCIdle	RW	0	ResAna	DC-DC Idle mode
3	DC-DCStartSts	RO	0		DC-DC Start-up status
2:0	-	NI	-	-	Not implemented

24. BAND GAP

The band gap voltage reference, written also BGR in this document, generates the reference voltage used for the following peripherals:

- VLD (while VLD enabled)
- ADC, (while ADC enabled CPU in active or standby mode)
- DC-DC, (while DCDC enabled)
- OPAMP (while OPAMP enabled and the BGR or the VLD reference is selected as one of the OPAMP inputs
- BGR output on PA[6], (while the reference voltage is output)
- NVM memory modification (fully controlled by ROM-API)

First time enabled allow for 130us reference voltage stabilization time before using one of the above mention functions needing the BGR voltage.

The reference voltage is automatically enabled as soon as one of the above mentioned functions is enabled. The reference voltage can be forced on by writing the bit **NVMEnWrite** in register **RegBgrCfg[6]** to '1' prior to use it for destination function. This allows using the VLD and ADC immediately after enabling (no need to wait first for BGR stabilization).

The BGR can be used as an external reference as well. Writing '1' in **BgrEnOut** in register **RegBgrCfg[7]** connects the voltage reference to **PA[6]** that shall be configured as analog pad before (digital output and input mode off and no pull's).

24.1 BAND GAP REGISTER

0x0060		RegBgrCfg			BandGap reference configuration
Bits	Name	Туре	ResVal	ResSrc	Description
7	BgrEnOut	RW	0	ResSys	Enable BandGap reference output to Port
6	NVMEnWrite	RW	0	ResSys	Enables BandGap in active mode
5:0	-	NI	-	-	Not implemented

Note:

When connecting the reference voltage to the PA[6] output, the reference voltage may drop during the switching transition due to charge sharing from the internal reference voltage node to the external PA[6] pad and its attached capacitance. In this case the settling time can be longer than 130us.

Always use the reference voltage only once its completely stabilized.

25. VLD

The Voltage Level Detector (VLD) compares a voltage on a terminal pad to a fix reference and returns the result '1' or generates an interrupt if the voltage is below the reference. The measurement is static meaning that there is no need to start any sequence and the selected voltage source terminal is continuously supervised. The reference voltage VVLD is factory pretrimmed.

25.1 VLD SOURCE AND LEVEL SELECTION

There are 8 terminals selectable with VLDSelSrc[2:0] in register RegVLDCfg1[5:3] as follows:

VLDSelSrc[2:0]	Source
000	VSUP (default)
001	PA1
010	PA2
011	PC1
100	PC5
101	PA6
110	PC6
111	PA7

The are 32 target level selectable with **VLDSelLev[4:0]** in register **RegVLDCfg2[4:0]** as follows: Refer to the electricalspecification for the voltage levels (spread from 0.8V to 3.0V)

VLDSelLev[4:0]	Level	VLDSelLev[4:0]	Level [V]
00000	VLD0	10000	VLD16
00001	VLD1	10001	VLD17
00010	VLD2	10010	VLD18
00011	VLD3	10011	VLD19
00100	VLD4	10100	VLD20
00101	VLD5	10101	VLD21
00110	VLD6	10110	VLD22
00111	VLD7	10111	VLD23
01000	VLD8	11000	VLD24
01001	VLD9	11001	VLD25
01010	VLD10	11010	VLD26
01011	VLD11	11011	VLD27
01100	VLD12	11100	VLD28
01101	VLD13	11101	VLD29
01110	VLD14	11110	VLD30
01111	VLD15	11111	VLD31

25.2 VLD ENABLE

VLD is enable writing '1' in **EnVLD** in register **RegVLDCfg1[7]**. After enabling it is recommended to wait 150us before enabling the related interrupt or read the VLD result to allow the reference voltage to stabilize. This stabilization wait is only needed if the internal BGR voltage was not enabled for 150us prior to enabling the VLD. If the BGR was already enabled before still allow 20us for the VLD reference to stabilize after VLD enabling. Refer also to 24.

25.3 VLD RESULT

When the voltage measured is below the VLD level the read-only bit VLDRes in register RegVLDCfg1[6] is at '1'.

25.4 VLD INTERRUPT

An interrupt is generated when the voltage measured is below the VLD level. The VLD interrupt **IntSts2VId** is in register **RegInt2Sts[7]**.

25.5 VLD TRIMMING

The VLD reference voltage VVLD is trimmed in production independently of the BGR. The trimming value is stored in the NVM at the address 0x6FF9. During the boot ROM sequence this value is copied in **TrimVLD[3:0]** in register **RegTrimVLD**. The user can modify this register to move slightly all VLD levels.

25.6 VLD REGISTERS

0x005	0x005E		g1		VLD Configuration - 1
Bits	Name	Туре	ResVal	ResSrc	Description
7	EnVLD	RW	0	ResSys	Enable VLD
6	VLDRes	RO	0	ResSys	VLD Result/Output
5:3	VLDSelSrc	RW	'000'	ResSys	Select VLD Input/Source
2:0	-	NI	-	-	Not implemented

0x005F		RegVLDCfg2			VLD Configuration - 2
Bits	Name	Туре	ResVal	ResSrc	Description
7:5	-	NI	-	-	Not implemented
4:0	VLDSelLev	RW	0x00	ResSys	Select VLD Level

0x02A4 Re		RegTrimVLD			Trimming value for VLD
Bits	Name	Туре	ResVal	ResSrc	Description
7:4	-	NI	-	-	Not implemented
3:0	TrimVLD	RW	0x8	ResAna	Trimming value for VLD

26. RC OSCILLATOR

There are 2 main internal RC oscillators:

- 15MHz oscillator (runs at 14.7456 MHz but called 15MHz oscillator)
- 2MHz oscillator

Thes 2 oscillators are factory pretrimmed, the trim value is stored in the NVM at the following addresses:

15MHz oscillator: 0x6FFD2MHz oscillator: 0x6FFC

The boot ROM sequence copies the 15MHz trimming value from the NVM into **TrimOsc15M** in register **RegTrimOsc15M** and the 2MHz trimming value from the NVM into **TrimOsc2M** in register **RegTrimOsc2M**. The user can modify these two trimming in their destination register **RegTrimOsc15M**, **RegTrimOsc2M**.

Note.

Before any CALL of sub-routine erasing or writing the NVM, the default RC timming values from NVM shall be restored.

26.1 RC OSCILLATORS REGISTERS

0x02	\2	RegTrimOsc15M			Trimming value for the 15 MHz Oscillator
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	TrimOsc15M	RW	0x80	ResAna	Trimming value for the 15 MHz Oscillator

0x02A	A 3	RegTrimOsc2M			Trimming value for the 2 MHz Oscillator
Bits	Name	Туре	ResVal	ResSrc	Description
7:0	TrimOsc2M	RW	0x80	ResAna	Trimming value for the 2 MHz Oscillator

118

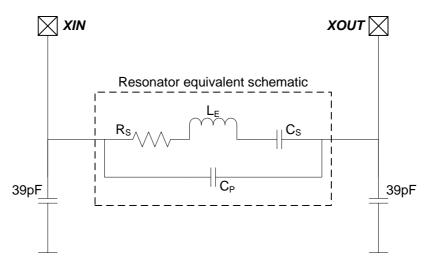
27. XTAL OSCILLATOR 32KHZ

XTAL oscillator is connected to the terminal pads **PA4** (**XIN**) and **PC4** (**XOUT**). These two pads shall be configured in analog mode (output and input mode disable and no pull's) before to launch the XTAL oscillator.

Note:

The XTAL oscillator shall be located as close as possible to the 6819. Both wires XIN and XOUT shall be routed as short as possible on the board.

For all information concerning the different configuration related to the 32KHz XTAL oscillator, refer to the chapter "Oscillator and Clocking structure".


28. RESONATOR 4MHZ

RC resonator is connected to the terminal pads *PA4* (*XIN*) and *PC4* (*XOUT*). These two pads shall be configured in analog mode (output and input mode disable and no pull's) before to launch the resonator.

Note:

The Resonator shall be located as close as possible to the 6819. Both wires XIN and XOUT shall be routed as short as possible on the board.

Two capacitors of 39pF shall be implemented on the board. The first between **XIN** and **VSS**, the second between **XOUT** and **VSS** as describe in the following schematic:

For all information concerning the different configuration related to the 4MHz resonator, refer to the chapter "Oscillator and Clocking structure".

29. 8KHZ OSCILLATOR

The 8kHz oscillator is used mainly for the watch-dog and the sleep counter wake-up system. Its frequency is not trimmable. However timings generated by the 8kHz oscillator can be calibrated with the trimmed 2Mhz or 15Mhz oscillator.

For very low power applications it is also possible possible to use the 8kHz oscillator for the CPU and the prescalers

For all information concerning the different configuration related to the 8kHz oscillator, refer to the chapter "Oscillator and Clocking structure".

30. ANALOG OPAMP

Each pin of the OPAMP in 6819 can be connected to different terminal or other peripherals. The positive input selection is done with **OpAmpSelInpPos[1:0]** in register **RegOpAmpCfg2[7:0]** as following:

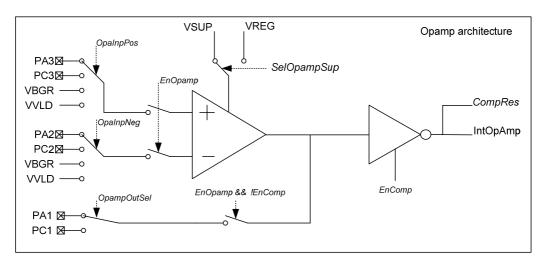
OpAmpSelInpPos[1:0]	positive input
00	PA3
01	PC3
10	VBGR
11	VVLD

The negative input selection is done with OpAmpSelInpNeg[1:0] in register RegOpAmpCfg[7:0] as following:

OpAmpSelInpNeg[1:0]	negative input
00	PA2
01	PC2
10	VBGR
11	VVLD

When the OPAMP is enable and comparator disable, the output can be mapped on to different terminal with **OpAmpSelOut** in register **RegOpAmpCfg[3]** as follows:

OpAmpSelOut	output
0	PA1
1	PC1


30.1 SELECT OPAMP/COMPARATOR

To enable the OPAMP, **EnOpAmp** in register **RegOpAmpCfg1[7]** shall be set at '1'. In this case the selected terminals are connected to the OPAMP. The terminal shall be configure in analog mode before to enable the OPAMP, it is not done automatically (output and input mode disable and no pull's).

To enable the comparator **EnOpAmp** in register **RegOpAmpCfg1[7]** and **EnComp** in register **RegOpAmpCfg1[6]** shall set at '1'. In this mode the output is not mapped on any of the two terminals **PA1** or **PC1**.

30.2 SUPPLY SELECTION

The OPAMP and the comparator are able to work under *VREG* or *VSUP* voltage to be able to select two different swings. Even when 6819 is supplied at 0.9V it is possible to get a swing of 1.6V if the OPAMP is supplied by *VREG*. When **OpAmpSup** in register **RegOpAmpCfg1** is at '0' *VSUP* is selected, if it is at '1' *VREG* is selected.

30.3 COMPARATOR RESULT

The comparator result is mapped on the read-only bit **CompRes** in register **RegOpAmpCfg1[4]**. The comparator can generate an interrupt mapped on **Int1StsOpAmp** in register **RegInt1Sts[3]**. It is possible to set on which edge the interrupt is generated with **SelCompInt[1:0]** in register **RegOpAmpCfg1[3:2]** as follows:

SelCompInt[1:0]	interrupt generation
00	no interrupt
01	interrupt on rising edge
10	interrupt on falling edge
11	interrupt on both edges

30.4 OPAMP REGISTERS

0x005	c005B RegOpAmpCfg1 OpAmp		OpAmp Configuration - 1		
Bits	Name	Туре	ResVal	ResSrc	Description
7	EnOpAmp	RW	0	ResSys	Enable OP Amplifier
6	EnComp	RW	0	ResSys	Enable/Select OpAmp as Comparator
5	OpAmpSup	RW	0	ResSys	OpAmp Supply: 0-Vbat, 1-Vreg
4	CompRes	RO	0	ResSys	Comparator Result
3:2	SelCompInt	RW	'00'	ResSys	Selector/Enable of Comparator Interrupt
1:0	-	NI	-	-	Not implemented

0x005	0x005C RegOpAmpCfg2 OpAmp Config		OpAmp Configuration - 2		
Bits	Name	Туре	Bits	Name	Туре
7:6	OpAmpSelInpPos[1:0]	RW	0	ResAna	Select opamp positive input source
5:4	OpAmpSelInpNeg[1:0]	RW	0	ResAna	Select opamp negative input source
3	OpAmpSelOut	RW	0	ResAna	Select opamp output pad
2:0	-	NI	-	-	Not implemented

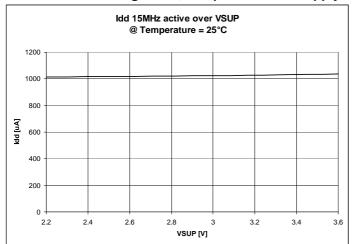
31. BLOCKS CONSUMPTION

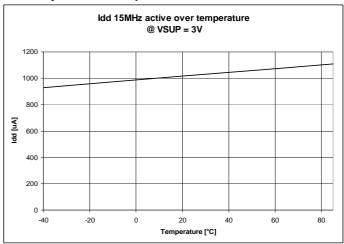
Following table shows the consumption of different blocks of EM6819 in typical conditions. Consumption of system, CPU, NVM access etc... have been excluded for each block to get only the consumption of the block itself.

Temperature: 25°C VSUP: 3V

Block	Consumption	Special conditions	
Brown-out	600 nA		
Watch-dog	40 nA		
Sleep counter wake-up	90 nA		
RC 15 MHz	23 uA		
RC 2 MHz	6 uA		
RC 8 kHz	90 nA		
Xtal	400 nA		
BGR	11 uA		
VLD	7.2 uA	VLD source: VLD level:	VSUP 0
ADC	50 uA	Sampling rate: Range: Reference: ADC Input:	12.5 kS/s 8/8 BGR (Not included in consumption) PC1 = 0.618 V (Vref / 2)
OpAmp	52 uA	Comparator mode: OpAmp supply: Input neg: Input pos: Output:	Off VSUP PA2 = 0V PA3 = VSUP (3V) PC1 = VSUP (3V)
	18 uA	Comparator mode: OpAmp supply: Input neg: Input pos: Output:	Off VSUP PA2 = VSUP (3V) PA3 = 0V PC1 = 0V
Timers	26 uA	Timer1 consumption co CPU clock: Prescaler1 clock: Prescaler2 clock: Timer1 clock:	onsidered 8kHz 2 MHz 8 kHz Prescaler1 Ck15 (2 MHz)
SPI	16 uA	SPI mode: SCLK clock: SIN: SOUT: Sequence:	Master, Auto start 2 MHz (not mapped on any pad) PA4 = 0V Not mapped on any pad Write 0xAA; 0x55 continously in RegSPIDOut

32. TYPICAL T AND V DEPENDENCIES


32.1 IDD CURRENTS


32.1.1 GENERAL CONDITIONS

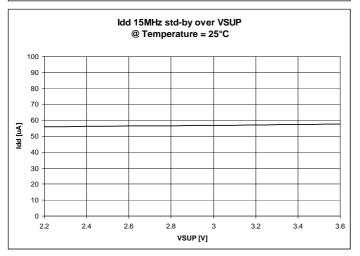

Mode	Description	
Active	CPU: Software: Prescaler1: Prescaler2: Brown-out: Watch-dog: Regulator:	running at selected clock makes a loop and writes/reads continuously the RAM Running on ck_hi when available otherwise ck_lo Always running on ck_lo Enable Running on 8kHz Vreg = 1.8V enable; multiplier enable when VSUP is low; retention voltage off
Stand-by	CPU: Software: Prescaler1: Prescaler2: Brown-out: Watch-dog: Regulator:	Halt state No software executed Running on ck_hi when available otherwise ck_lo Always running on ck_lo Enable Running on 8kHz Vreg = 1.8V enable; multiplier enable when VSUP is low; retention voltage off
Sleep	CPU: Software: Prescaler1: Prescaler2: Brown-out: Watch-dog: Regulator:	Halt state No software executed Disable Disable Disable Disable Disable Vreg = 1.8V enable; multiplier off; retention voltage enable
Power- down	CPU: Software: Prescaler1: Prescaler2: Brown-out: Watch-dog: Regulator:	Halt state No software executed Disable Disable Disable Disable Disable Vreg = 1.8V off; multiplier off; retention voltage off

Figure 31, Temperature and supply dependency for consumption @ 15 MHz

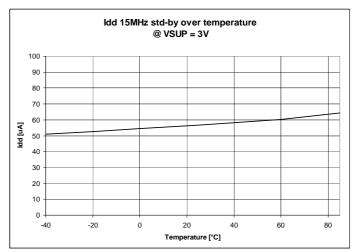
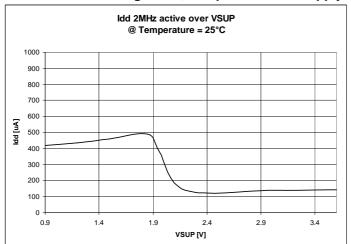
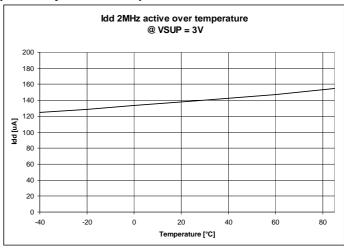
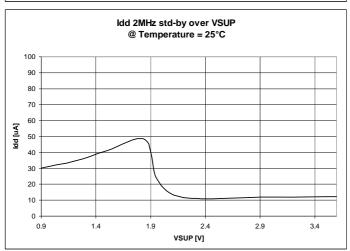





Figure 32, Temperature and supply dependency for consumption @ 2 MHz

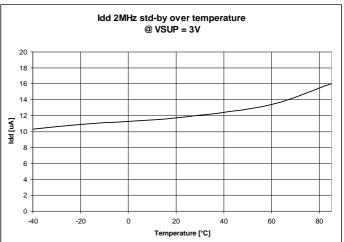
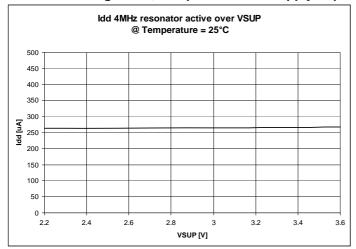
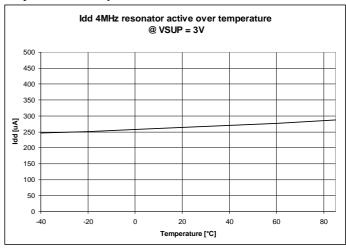
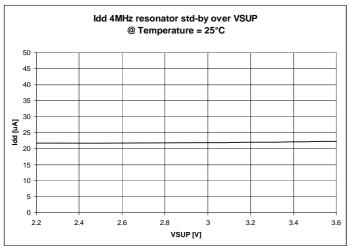





Figure 33, Temperature and supply dependency for consumption @ 4 MHz resonator

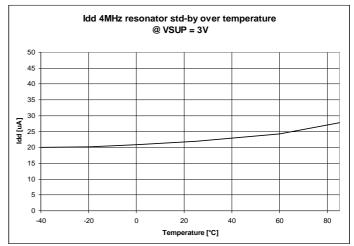
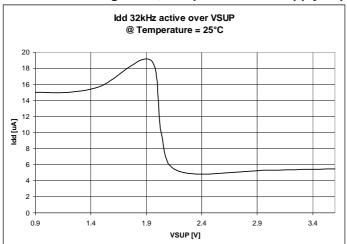
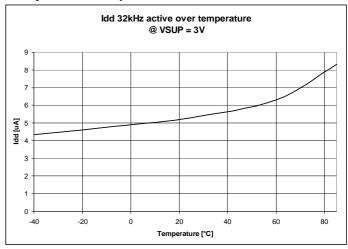
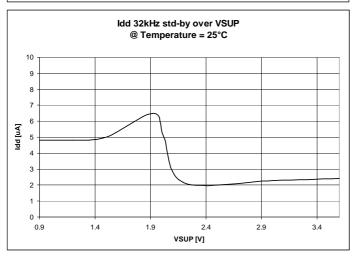
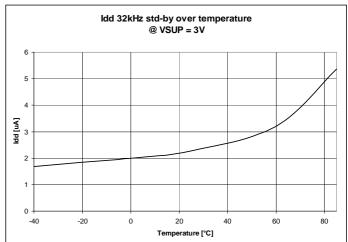
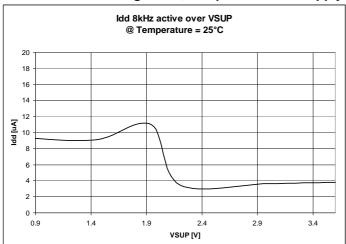
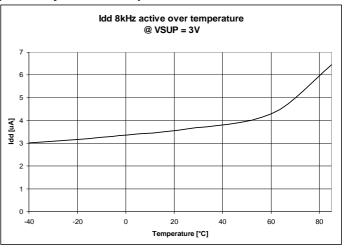
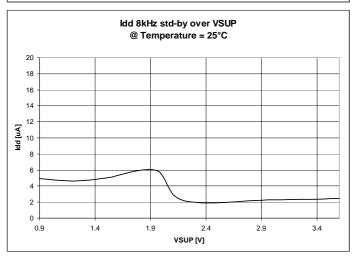





Figure 34, Temperature and supply dependency for consumption @ 32 kHz XTAL

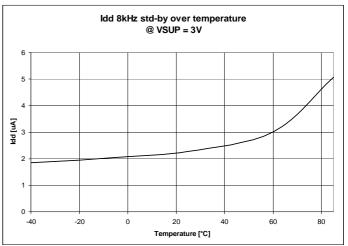
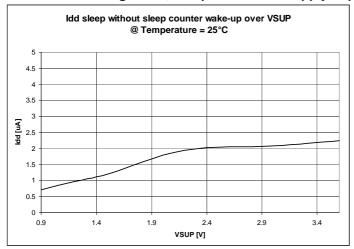
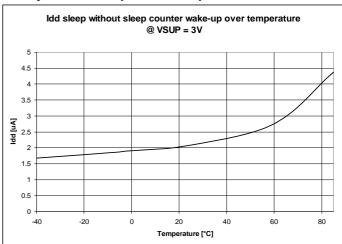
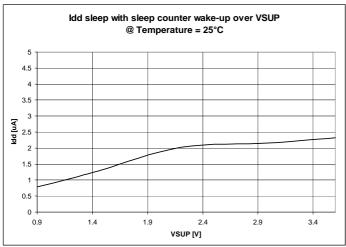
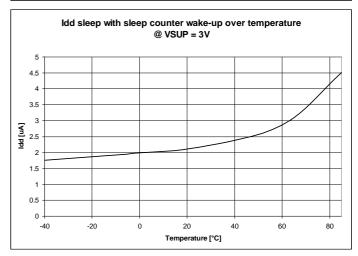
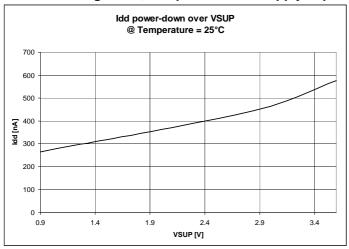
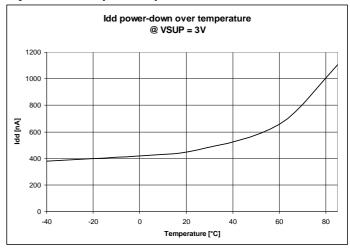


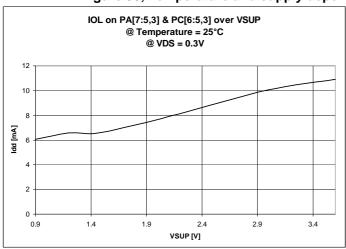
Figure 35, Temperature and supply dependency for consumption @ 8 kHz

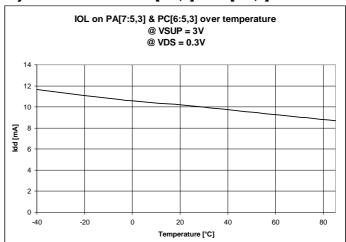


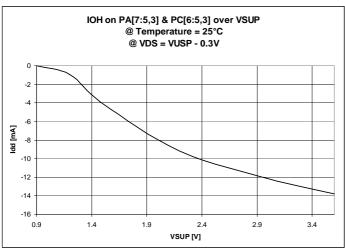




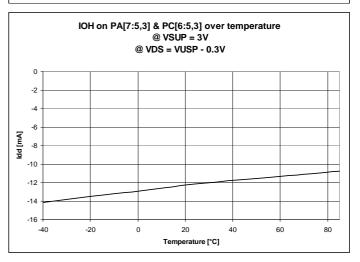
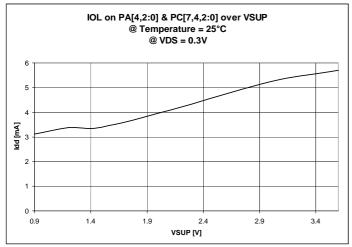

Figure 37, Temperature and supply dependency for consumption in power-down mode





32.2 IOL AND IOH DRIVES

Figure 38, Temperature and supply dependency for IOL & IOH on PA[7:5,3] & PC[6:5,3]

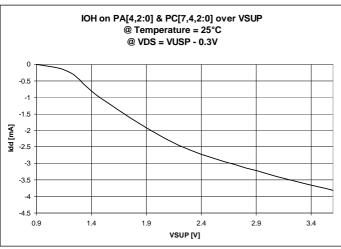
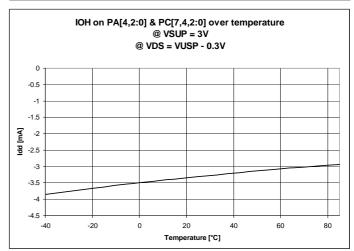
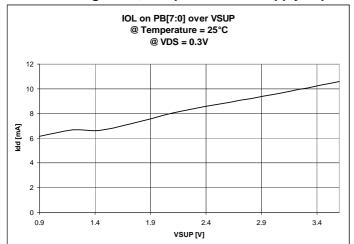
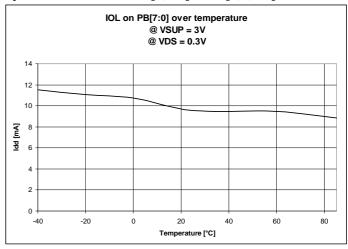
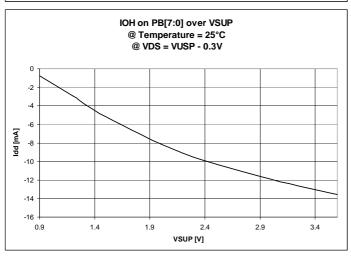


Figure 39, Temperature and supply dependency for IOL & IOH on PA[4,2:0] & PC[7,4,2:0]

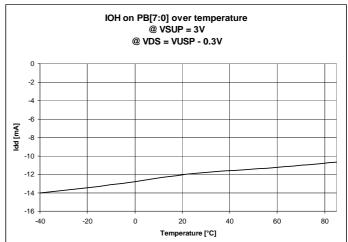
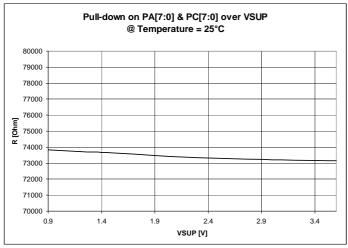
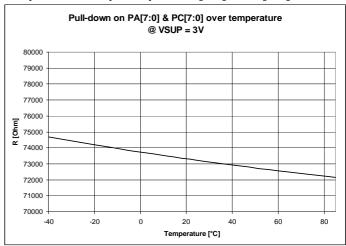
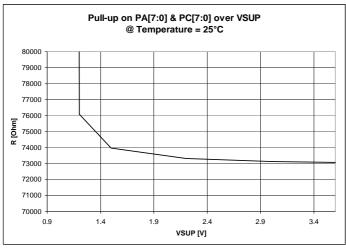


Figure 40, Temperature and supply dependency for IOL & IOH on PA[4,2:0] & PC[7,4,2:0]

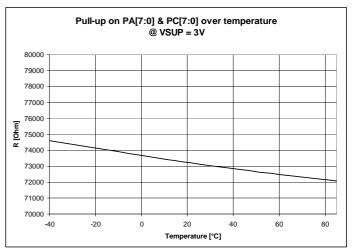
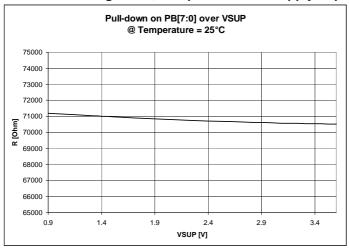
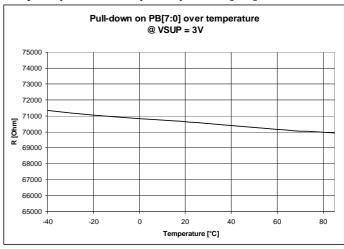
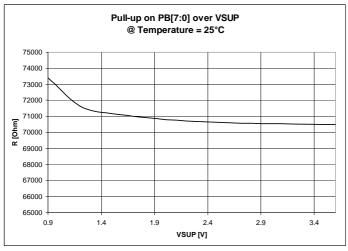






32.3 PULL-UP AND PULL-DOWN

Figure 41, Temperature and supply dependency for pull-down & pull_up on PA[7:0] & PC[7:0]

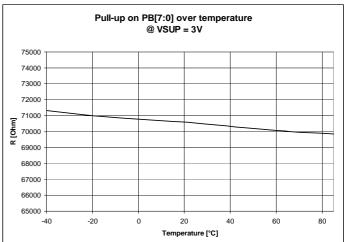
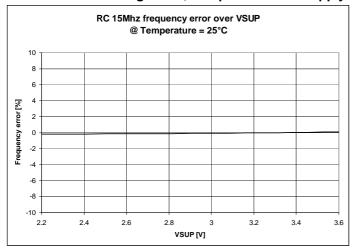
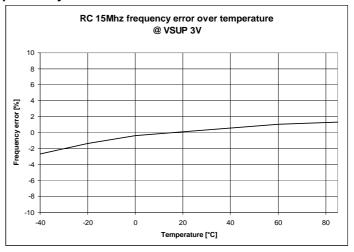
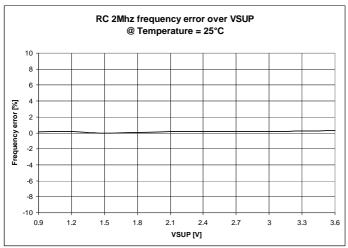


Figure 42, Temperature and supply dependency for pull-down & pull_up on PB[7:0]







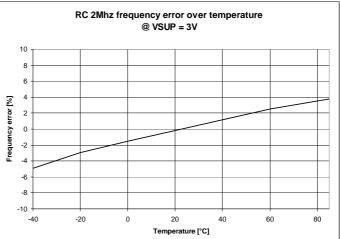

32.4 RC OSCILLATOR 15MHZ AND 2MHZ

Figure 43, Temperature and supply dependency for internal RC oscillators

33. ELECTRICAL SPECIFICATION

33.1 ABSOLUTE MAXIMUM RATINGS

	Min.	Max.	Units
Power supply V _{SUP} -V _{SS}	- 0.2	+3.8	V
Input voltage	V _{SS} - 0.2	V _{SUP} +0.2	V
Storage temperature	- 40	+ 125	°C
Electrostatic discharge to	-2000	+2000	V
Mil-Std-883C method 3015.7 with ref. to V _{SS}			
Maximum soldering conditions Packages are Green-Mold and Lead-free	As p	er Jedec J-STD-020	С

Stresses above these listed maximum ratings may cause permanent damage to the device.

Exposure beyond specified electrical characteristics may affect device reliability or cause malfunction

33.2 HANDLING PROCEDURES

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions should be taken as for any other CMOS integrated circuit.

Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range.

33.3 STANDARD OPERATING CONDITIONS

Parameter	MIN	TYP	MAX	Unit	Description
Temperature	-40	25	85	°C	
V _{SUP} _range	0.9	3	3.6	V	Voltage at power-up
DCDC V _{SUP} min		0.6		V	Minimum battery voltage after start-up with DC-DC enabled; maximum current load 10 mA at 0.6V
I _{VSS} max			80	mA	Maximum current out of V _{SS} Pin
I _{VSUP} max			80	mA	Maximum current into V _{SUP} Pin
DCDC input current			500	mA	Maximum current from the Battery into the DCDC
V_{SS}		0		V	Reference terminal
C _{VREG} (1)	400			nF	regulated voltage capacitor
C _{VSUP} (with dc-dc)		40		uF	Supply voltage capacitor with DC-DC
L _{DCDC} (with dc-dc)		39		uH	DC-DC coil
Flash data retention	20			yrs	Read and Erase state retention
Flash cycling			10k	cycle	1 cycle is one erase followed by 1 write

Note 1: This capacitor filters switching noise from V_{SUP} to keep it away from the internal logic and memory cells. In noisy systems the capacitor should be chosen higher than minimum value.

33.4 TYPICAL 32KHZ CRYSTAL SPECIFICATION

Fq	32768	Hz	nominal frequency
Rqs	35	KOhm	typical quartz serial resistance
C_L	8.2	pF	typical quartz load capacitance
df/f	± 30	ppm	quartz frequency tolerance

Watch type crystal oscillator (i.e Microcrystal DS15), connected between QIN and Qout terminal.

33.5 TYPICAL 4MHZ CRYSTAL SPECIFICATION

F_R	4	MHz	nominal frequency
R_s	9	Ohm	Typical equivalent resistor
Cs	3.8	pF	Typical equivalent serial capacitor
C _P	19.8	pF	Typical equivalent parallel capacitor
L _S	460	uH	Typical equivalent inductor
df/f	± 30	ppm	quartz frequency tolerance

33.6 TYPICAL 4MHZ RESONATOR SPECIFICATION

F_R	4	MHz	nominal frequency
R _s	22.1	Ohm	Typical equivalent resistor
Cs	0.007	pF	Typical equivalent serial capacitor
C_P	2.39	pF	Typical equivalent parallel capacitor
L _S	210	mH	Typical equivalent inductor
df/f	± 0.5	%	Resonator frequency tolerance

Watch type resonator oscillator CERALOCK Murata CSTLS4M00G53-B0, connected between QIN and Qout terminal.

33.7 DC CHARACTERISTICS - POWER SUPPLY CURRENTS

Conditions:

In active mode, the software makes a loop and writes/reads continuously the RAM, the following blocks are active:

- NVM instructions read access
- RAM read/write access
- Prescalers 1 & 2
- Selected oscillator
- RC 8kHz
- Regulator
- Voltage multiplier in low voltage mode
- Brown-out
- Power on reset
- Internal bias current generation

In stand-by mode, the software execution is stopped; the following blocks are active:

- Prescalers 1 & 2
- Selected oscillator
- RC 8kHz
- Regulator
- Voltage multiplier in low voltage mode
- Brown-out
- Power on reset
- Internal bias current generation

In sleep mode, the software execution is stopped; the following blocks are active:

- RC 8kHz
- Regulator
- Voltage multiplier in low voltage mode
- Brown-out
- Power on reset
- Internal bias current generation

In power-down mode, the software execution is stopped; the following blocks are active:

- Power on reset
- Internal bias current generation

Following table includes product: EM6819FX-XX0 and EM6819FX-XX4

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
ACTIVE Supply Current CPU on RC=15MHz, no div	V _{SUP} =3V, -40 to 85°C, 7.5 MIPS	I _{VSUPA15MD1}		1.05	1.7	mA
ACTIVE Supply Current CPU on RC=2MHz, no div	V _{SUP} =3V, -40 to 85°C, 1 MIPS	I _{VSUPA2MD1}		140	250	μA
ACTIVE Supply Current CPU on RC=2MHz (2), no div	V _{SUP} =1.2V, -40 to 85°C, 1MIPS	I _{VSUPA2MD1}		490		μA
ACTIVE Supply Current CPU on XTal=32KHz, no div	V _{SUP} =3V, -40 to 85°C, 16 kIPS	I _{VSUPA32K}		4.2	13	μΑ
ACTIVE Supply Current CPU on XTal=32KHz, no div	V _{SUP} =3V, -40 to 60°C, 16 kIPS	I _{VSUPA32K}		4.2	8	μA
ACTIVE Supply Current CPU on RC=8KHz, no div	V _{SUP} =3V, -40 to 85°C, 4 kIPS	I _{VSUPA8K}		3.5		μA
Std-by Supply Current Peri on RC=15MHz, no div	V _{SUP} =3V, -40 to 85°C, HF Div=1	I _{VSUPH15MD1}		72		μA
Std-by Supply Current Peri on RC=2MHz, no div	V _{SUP} =3V, -40 to 85°C, HF Div=1	I _{VSUPH2MD1}		14		μA
Std-by Supply Current Peri on XTal=32KHz, no div	V _{SUP} =3V, -40 to 85°C, HF RC off	I _{VSUPH32K}		2.3	10	μΑ

Std-by Supply Current Peri on XTal=32KHz, no div	V _{SUP} =3V, -40 to 60°C, HF RC off	I _{VSUPH32K}	2.3	5	μΑ
Std-by Supply Current Peri on RC=8KHz, no div	V _{SUP} =3V, -40 to 85°C, HF RC off	I _{VSUPH8K}	2.3	9	μΑ
Std-by Supply Current Peri on RC=8KHz, no div	V _{SUP} =3V, -40 to 60°C, HF RC off	I _{VSUPH8K}	2.3	5	μA
Sleep Supply Current Wake-up counter on	V _{SUP} =3V, -40 to 85°C	I _{VSUPSWK}	1.95	8	μA
Sleep Supply Current Wake-up counter on	V _{SUP} =3V, -40 to 60°C, RC 8kHz on	I _{VSUPSWK}	1.95	4	μA
Sleep Supply Current Wake-up counter off	V_{SUP} =3V, -40 to 85°C, RC8kHz off	I _{VSUPSLEEP}	1.9		μΑ
Powerdown	V _{SUP} =3V, -40 to 25°C	I _{VSUPPWDWN}	0.45	0.65	μA
Powerdown	$V_{SUP} = 3V$, -40 to 60°C	I _{VSUPPWDWN}	0.45	0.8	μA
Powerdown	$V_{SUP} = 3V$, -40 to 85°C	I _{VSUPPWDWN}	0.45	1.65	uA

Note 2: Internal voltage multiplier enable.

Following table includes product: EM6819FX-XX5 and EM6819FX-XX6

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
ACTIVE Supply Current CPU on RC=15MHz, no div	V _{SUP} =3V, -40 to 85°C, 7.5 MIPS	I _{VSUPA15MD1}		0.85	1.2	mA
ACTIVE Supply Current CPU on RC=2MHz, no div	V _{SUP} =3V, -40 to 85°C, 1 MIPS	I _{VSUPA2MD1}		116	180	μΑ
ACTIVE Supply Current CPU on RC=2MHz (2), no div	V _{SUP} =1.2V, -40 to 85°C, 1MIPS	I _{VSUPA2MD1}		490		μΑ
ACTIVE Supply Current CPU on XTal=32KHz, no div	V _{SUP} =3V, -40 to 85°C, 16 kIPS	I _{VSUPA32K}		4.2	13	μΑ
ACTIVE Supply Current CPU on XTal=32KHz, no div	V _{SUP} =3V, -40 to 60°C, 16 kIPS	I _{VSUPA32K}		4.2	8	μA
ACTIVE Supply Current CPU on RC=8KHz, no div	V _{SUP} =3V, -40 to 85°C, 4 kIPS	I _{VSUPA8K}		3.5		μA
Std-by Supply Current Peri on RC=15MHz, no div	V _{SUP} =3V, -40 to 85°C, HF Div=1	I _{VSUPH15MD1}		72		μA
Std-by Supply Current Peri on RC=2MHz, no div	V _{SUP} =3V, -40 to 85°C, HF Div=1	I _{VSUPH2MD1}		14		μA
Std-by Supply Current Peri on XTal=32KHz, no div	V_{SUP} =3V, -40 to 85°C, HF RC off	I _{VSUPH32K}		2.3	10	μΑ
Std-by Supply Current Peri on XTal=32KHz, no div	V_{SUP} =3V, -40 to 60°C, HF RC off	I _{VSUPH32K}		2.3	5	μΑ
Std-by Supply Current Peri on RC=8KHz, no div	V_{SUP} =3V, -40 to 85°C, HF RC off	I _{VSUPH8K}		2.3	9	μΑ
Std-by Supply Current Peri on RC=8KHz, no div	V_{SUP} =3V, -40 to 60°C, HF RC off	I _{VSUPH8K}		2.3	5	μΑ
Sleep Supply Current Wake-up counter on	V _{SUP} =3V, -40 to 85°C	I _{VSUPSWK}		1.95	8	μΑ
Sleep Supply Current Wake-up counter on	V _{SUP} =3V, -40 to 60°C, RC 8kHz on	I _{VSUPSWK}		1.95	4	μΑ
Sleep Supply Current Wake-up counter off	V _{SUP} =3V, -40 to 85°C, RC8kHz off	I _{VSUPSLEEP}		1.9		μΑ
Powerdown	V _{SUP} =3V, -40 to 25°C	I _{VSUPPWDWN}		0.45	0.65	μΑ
Powerdown	V _{SUP} =3V, -40 to 60°C	I _{VSUPPWDWN}		0.45	0.8	μA
Powerdown	V _{SUP} =3V, -40 to 85°C	I _{VSUPPWDWN}		0.45	1.65	uA

Note 2: Internal voltage multiplier enable.

33.8 DC CHARACTERISTICS - VOLTAGE DETECTION LEVELS

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
POR V _{SUP} static level on rising						
edge	-40 to 85°C	V_{PORRIS}		0.7	0.86	V
POR V _{SUP} static level on falling	10.1.0700	.,		0.50	0 = 4	
edge	-40 to 85°C	V_{PORFAL}		0.58	0.74	V
Temperature coefficient	-40 to 25°C	T _{VLD_COEF_LO}	-0.110	0.01	0.134	%/°C
Temperature coefficient	25 to 85°C	T _{VLD_COEF_HI}	-0.117	0.01	0.142	%/°C
VLD0, VBAT decreasing	25°C	V_{VLD0}		0.800		V
VLD1, VBAT decreasing	25°C	V_{VLD1}		0.820		V
VLD2, VBAT decreasing	25°C	V_{VLD2}		0.840		V
VLD3, VBAT decreasing	25°C	V_{VLD3}		0.860		V
VLD4, VBAT decreasing	25°C	V_{VLD4}		0.880		V
VLD5, VBAT decreasing	25°C	V_{VLD5}		0.900		V
VLD6, VBAT decreasing	25°C	V_{VLD6}		0.920		V
VLD7, VBAT decreasing	25°C	V_{VLD7}		0.940		V
VLD8, VBAT decreasing	25°C	V_{VLD8}		0.960		V
VLD9, VBAT decreasing	25°C	V_{VLD9}		0.980		V
VLD10, VBAT decreasing	25°C	V _{VLD10}		1.000		V
VLD11, VBAT decreasing	25°C	V _{VLD11}		1.100		V
VLD12, VBAT decreasing	25°C	V _{VLD12}		1.150		V
VLD13, VBAT decreasing	25°C	V _{VLD13}		1.200		V
VLD14, VBAT decreasing	25°C	V_{VLD14}		1.300		V
VLD15, VBAT decreasing	25°C	V_{VLD15}		1.400		V
VLD16, VBAT decreasing	25°C	V _{VLD16}		1.450		V
VLD17, VBAT decreasing	25°C	V_{VLD17}		1.500		V
VLD18, VBAT decreasing	25°C	V_{VLD18}		1.600		V
VLD19, VBAT decreasing	25°C	V_{VLD19}		1.700		V
VLD20, VBAT decreasing	25°C	V_{VLD20}		1.900		V
VLD21, VBAT decreasing	25°C	V_{VLD21}		2.100		V
VLD22, VBAT decreasing	25°C	V_{VLD22}		2.300		V
VLD23, VBAT decreasing	25°C	V_{VLD23}		2.400		V
VLD24, VBAT decreasing	25°C	V_{VLD24}		2.500		V
VLD25, VBAT decreasing	25°C	V_{VLD25}		2.550		V
VLD26, VBAT decreasing	25°C	V_{VLD26}		2.600		V
VLD27, VBAT decreasing	25°C	V_{VLD27}		2.700		V
VLD28, VBAT decreasing	25°C	V _{VLD28}		2.800		V
VLD29, VBAT decreasing	25°C	V_{VLD29}		2.900		V
VLD30, VBAT decreasing	25°C	V _{VLD30}		2.950		V
VLD31, VBAT decreasing	25°C	V _{VLD31}	2.981	3.000	3.025	V

33.9 DC CHARACTERISTICS - REFERENCE VOLTAGE

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Temperature coefficient	-40 to 25°C	T _{BGR COEF LO}	-0.102	0.01	0.128	%/°C
Temperature coefficient	25 to 85°C	T _{BGR COEF HI}	-0.112	0.01	0.136	%/°C
Reference voltage after trimming	V _{SUP} =3V, 25°C	V_{BGP}	1.225	1.236	1.247	V
Output load current on PA[2]	V _{SUP} =3V, -40 to 85°C, VBGP output				10	uA
VLD reference voltage	$V_{SUP} = 3V$, -40 to 85°C	V_{VLD}		0.8		V

33.10 DC CHARACTERISTICS – DC-DC CONVERTER

V_{BAT} is input voltage of DC-DC (main Battery), V_{SUP} is output voltage of DC-DC

Parameter Conditions Symbol Min. Typ. Max. Uni
--

Battery voltage range	-40 to 85°C	V_{BAT}	0.9		1.8	V
DC-DC level 2.1	-40 to 85°C; V _{BATMIN} to V _{BATMAX}	V _{DCDC2.1}		2.1		V
DC-DC level 2.5	-40 to 85°C ; V _{BATMIN} to V _{BATMAX}	V _{DCDC2.5}		2.5		V
DC-DC level 2.9	-40 to 85°C ; V _{BATMIN} to V _{BATMAX}	V _{DCDC2.9}		2.9		V
DC-DC level 3.3	-40 to 85°C ; V _{BATMIN} to V _{BATMAX}	V _{DCDC3.3}		3.3		V
Output ripple	-40 to 85°C; V _{BATMIN} to V _{BATMAX}	V _{RIP}			+/-100	mV
Max current load	-40 to 85°C; @V _{BATMIN}	I _{LOAD09V}			40	mA
Max current load	@ V _{BATMax} , V _{DCDC} =3.3V	I _{LOAD18V}		150		mA
DC-DC efficiency	-40 to 85°C; V _{BATMIN} to V _{BATMAX}	DCDC _{EFF}		85		%

33.11 DC CHARACTERISTICS - OSCILLATORS

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
32KHz XTAL Integrated Input capacitor	Reference on V _{SS} T=25°C	C _{IN}		7		pF
32KHz Xtal Integrated Output capacitor	Reference on V _{SS} T=25°C	C _{OUT}		14		pF
32KHz Xtal Oscillator start time	$V_{SUP} > V_{SUP}Min$ T=25°C	t _{dosc}		0.5	4	S
4MHz resonator start time	$V_{SUP} > V_{SUP}Min$ T=25°C	t _{dosc}		1	10	ms
4MHz XTal start time	$V_{SUP} > V_{SUP}Min$ T=25°C	t _{dosc}		3	30	ms
RC oscillator 15MHz Temperature coefficient	-40 to 25°C	T _{RC15_COEF_LO}	-0.018	0.04	0.106	%/°C
RC oscillator 15MHz Temperature coefficient	25 to 85°C	T _{RC15_COEF_HI}	-0.055	0.004	0.069	%/°C
RC Oscillator 15MHz	After trimming, 25°C	F _{RC15M}	14.6129	14.7456	14.8783	MHz
Trimm range 15MHz				+50/-30		%
RC oscillator 2MHz Temperature coefficient	-40 to 25°C	T _{RC2_COEF_LO}	-0.031	0.08	0.177	%/°C
RC oscillator 2MHz Temperature coefficient	25 to 85°C	T _{RC2_COEF_HI}	-0.058	0.05	0.164	%/°C
RC Oscillator 2MHz	After trimming, 25°C	F _{RC1MHz}	1.976	2	2.024	MHz
Trimm range 2MHz				+50/-30		%

33.12 DC CHARACTERISTICS – VHIGH

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
VHIGH level V _{SUP} low	V _{SUP} < 1.6V, -40 to 85°C	$V_{HighLOW}$	1.6		2.0	V
VHIGH level V _{SUP} high	V _{SUP} > 1.6V, -40 to 85°C	V_{HighHI}	V _{SUP} - 0.1		V_{SUP}	V

33.13 DC CHARACTERISTICS - OPAMP

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Open loop gain	V _{SUP} =3V, -40 to 85°C	A ₀		70		dB
Gain band width	V _{SUP} =3V, -40 to 85°C	GBW		0.7		MHz
Phase margin	V _{SUP} =3V, -40 to 85°C	PM		60		0
PSRR @ 100kHz	V _{SUP} =3V, -40 to 85°C	PSRR		-24		dB
CMRR @ 100kHz	V _{SUP} =3V, -40 to 85°C	CMRR		-47		dB
Noise	V _{SUP} =3V, -40 to 85°C	NOISE		10		uV
Input offset	V _{SUP} =3V, -40 to 85°C	VIN _{OFFSET}	-50	0	50	mV
Reaction time to enable signal	V _{SUP} =3V, -40 to 85°C	T _{ON}		20		us
Output voltage swing	V _{SUP} =3.0V, -40 to 85°C V _{INCM} =350mV OPAMP supply Vreg	Vos	1.3	1.85		V
Current load IOH	V _{SUP} =3V, -40 to 85°C	I _{LOAD}	-180			uA
Current load IOL	V _{SUP} =3V, -40 to 85°C	I _{LOAD}			150	uA
Slew rate	$V_{SUP} = 3.0V, -40 \text{ to } 85^{\circ}\text{C}$ $V_{INCM} = 350\text{mV}$	SR		0.6		V/us

33.14 DC CHARACTERISTICS - ADC

10 bits ADC considered (RegADCOut1.ADCOutLSB is ignored)

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
ADC offset Temperature coefficient	-40 to 25°C	T _{ADC_COEF_LO}	-0.108	0.01	0.135	%/°C
ADC offset Temperature coefficient	25 to 85°C	T _{ADC_COEF_HI}	-0.114	0.02	0.150	%/°C
ADC offset	V_{SUP} =3V, 25°C ADCref = V_{BGP} ; Rate 91kS/s Range 8/8	ADC _{Offset}	-4	0	4	LSB
ADC DNL	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 91kS/s; Range 8/8	ADC _{DNL}	-2	0	2	LSB
ADC INL + gain error	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 91kS/s; Range 8/8	ADC _{INLT}	-13	0	13	LSB
ADC INL best fit	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 91kS/s; Range 8/8	ADC _{INLbestfit}	-6	0	6	LSB
ADC DNL range 8/8	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 45kS/s; Range 8/8	ADC _{DNL6/8}		+/- 0.5		LSB
ADC DNL range 6/8	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 45kS/s; Range 6/8	ADC _{DNL6/8}		+/- 0.5		LSB
ADC DNL range 4/8	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 45kS/s; Range 4/8	ADC _{DNL4/8}		+/- 0.5		LSB
ADC INL best fit range 6/8	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 45kS/s; Range 6/8	ADC _{INLT6/8}		+/- 4		LSB
ADC INL best fit range 4/8	V_{SUP} =3V, -40 to 85°C ADCref = V_{BGP} ; Rate 45kS/s; Range 4/8	ADC _{INLT4/8}		+/- 4		LSB

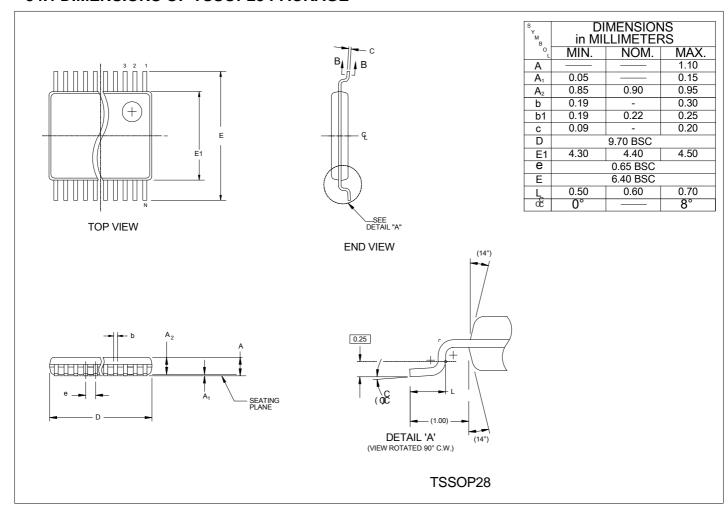
33.15 DC CHARACTERISTICS - TEMPERATURE SENSOR

10 bits ADC considered (RegADCOut1.ADCOutLSB is ignored)

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Temp sensor result at 25°	V _{SUP} =3V	Tempsens ₂₅		416		LSB
Temp sensor result at -40°	V _{SUP} =3V	Tempsens ₋₄₀		183		LSB
Temp sensor result at 60°	V _{SUP} =3V	Tempsens ₆₀		550		LSB
Temp sensor result at 85°	V _{SUP} =3V	Tempsens ₈₅		639		LSB
Temp sensor slope	V _{SUP} =3V ; Temp range 0° - 60°	Tempsens _{slope}		3.8		LSB/°
Temp sensor linearity	V _{SUP} =3V ; Temp range 0° - 60°	Tempsens _{lin}		+/-0.8		%

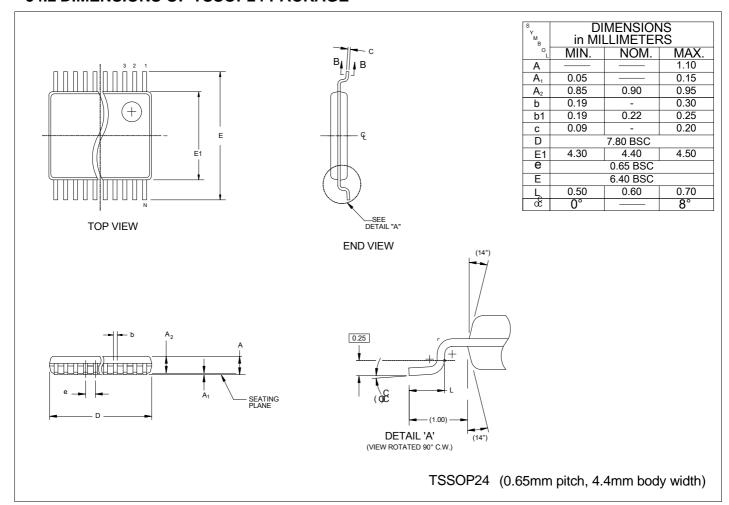
Note: offset & calibration values stored in NVM are coded on 11bits than values are twice values in above table.

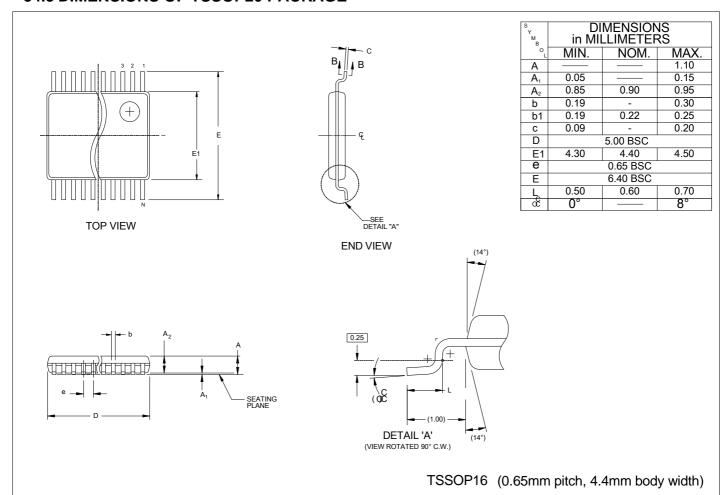
33.16 DC CHARACTERISTICS - I/O PINS


Conditions: T= -40 to 85°C, V_{SUP}=3.0V (unless otherwise specified)

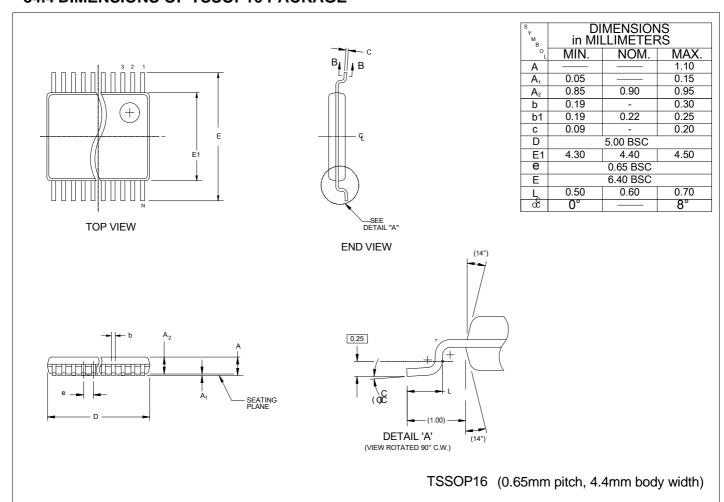
Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit
Input Low voltage						
Ports A,B, C		V_{IL}	V_{SS}		0.2*	V
					V_{SUP}	
Input High voltage						
Ports A,B, C		V_{IH}	0.8*		V_{SUP}	V
			V_{SUP}			
Input Hysteresis	Temp=25°C	V_{Hyst}		0.42		V
PA[7:0], PB[7:0], PC[7:0]	'	V Hyst				V
IOL drive high	$V_{SUP} = 3.0V$, $V_{OL} = 0.3V$	l _{OL}	4.2	9.9		mA
PA[7:5,3], PB[7:0],		l _{OL}		19.8		mA
PC[6:5,3]	$V_{SUP} = 3.0V$, $V_{OL} = 1.0V$	l _{OL}		33.0		mA
IOL drive low	$V_{SUP} = 3.0V , V_{OL} = 0.3V$	l _{OL}	1.6	5.2		mΑ
PA[4,2:0], PC[7,4,2:0]	$V_{SUP} = 3.0V , V_{OL} = 0.6V$	I _{OL}		10.4		mΑ
17(4,2.0], 1 0[7,4,2.0]	$V_{SUP} = 3.0V$, $V_{OL} = 1.0V$	l _{OL}		17.3		mΑ
IOH drive high	$V_{SUP} = 3.0V$, $V_{OH} = V_{SUP} - 0.3V$	I _{OH}		-12.7	-6.5	mΑ
PA[7:5,3], PB[7:0],	$V_{SUP} = 3.0V$, $V_{OH} = V_{SUP} - 0.6V$	I _{OH}		-25.4		mΑ
PC[6:5,3]	$V_{SUP} = 3.0V$, $V_{OH} = V_{SUP} - 1.0V$	I _{OH}		-42.3		mΑ
IOH drive low	$V_{SUP} = 3.0V$, $V_{OH} = V_{SUP} - 0.3V$	I _{OH}		-3.3	-1.0	mΑ
PA[4,2:0], PC[7,4,2:0]	$V_{SUP} = 3.0V$, $V_{OH} = V_{SUP} - 0.6V$	I _{OH}		-6.6		mΑ
1 7[4,2.0], 1 0[7,4,2.0]	$V_{SUP} = 3.0V$, $V_{OH} = V_{SUP} - 1.0V$	I _{OH}		-11.0		mΑ
Input Pull-down	V _{SUP} =3.0V, Pin at 3.0V	R _{PD}	35k	70k	100k	Ohm
Port A,B,C	V _{SUP} =5.0V, Fill at 5.0V	IXPD	336	7 UK	TOOK	Ollill
Input Pull-up			35k	70k	100k	Ohm
Port A,B,C	V_{SUP} =3.0V, Pin at 0.0V	R _{PU}	JJK	7 UK	1001	Jiiii
Input Pull-down	V _{SUP} =3.0V, Pin at 3.0V	R _{PDTM}		20k		Ohm
TM	V SUP -3.0 V, 1 111 at 3.0 V	TYPDIM		ZUK		Ollill

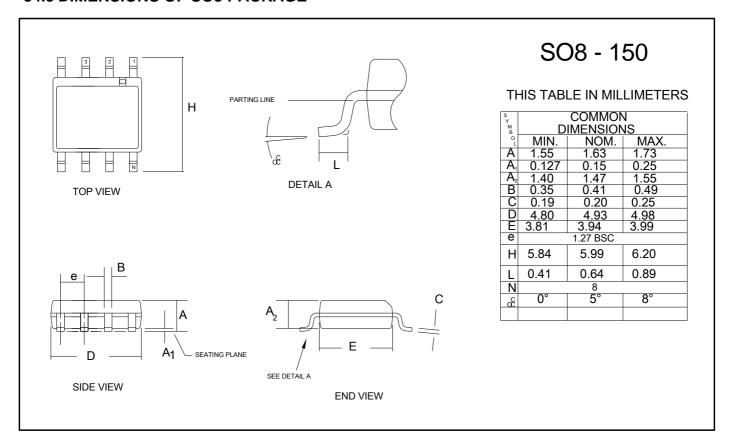
34. PACKAGE DRAWINGS


34.1 DIMENSIONS OF TSSOP28 PACKAGE

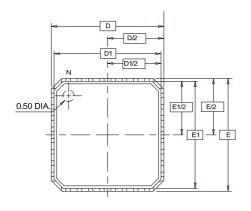


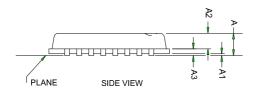
34.2 DIMENSIONS OF TSSOP24 PACKAGE

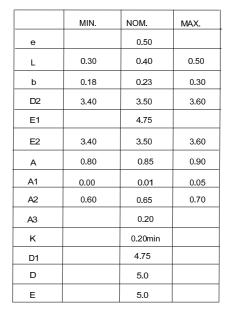

34.3 DIMENSIONS OF TSSOP20 PACKAGE



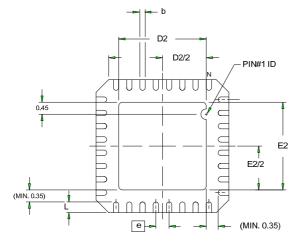
34.4 DIMENSIONS OF TSSOP16 PACKAGE



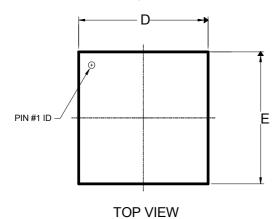

34.5 DIMENSIONS OF SO8 PACKAGE

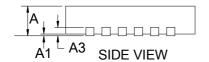


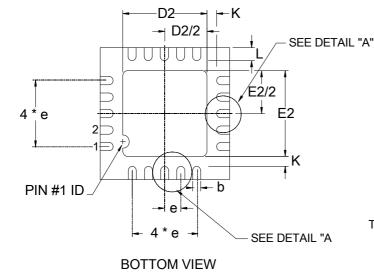
34.6 DIMENSIONS OF QFN32 PACKAGE

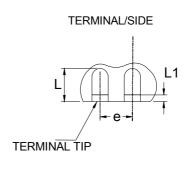


TOP VIEW




ALL DIMENSIONS ARE IN MILLIMETERS


34.7 DIMENSIONS OF QFN20 PACKAGE



	MIN.	NOM.	MAX.
е		0.50	
L	0.45	0.50	0.55
b	0.18	0.25	0.30
D2	2.50	2.60	2.70
E2	2.50	2.60	2.70
Α	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3		0.20	
K		0.20min	
D		4.0	
Е		4.0	
L1		0.15max	

DETAIL "A"

35. PACKAGE MARKING

The first line of the package marking contains the Revision ID and the bonding option The remaining lines contain Lot identification information

First Line: EM6819 XY wheras XY= Circuit hardware information and package pinout

Current Package markings

- EM6819 DA (hardware D with DCDC available)
- EM6819 DB (hardware D without DCDC)
- EM6819 EA (hardware E with DCDC available)
- EM6819 EB (hardware E without DCDC)

For changes refer to the Errata section.

36. **ERRATA**

EM6819 DA, EM6819 DB

- unstable IVDD consumption possible in powerdown mode
- External reference input for ADC limited to 2.8V

<u>Current Revision</u> EM6819 EA, EM6819 EB

External reference input for ADC limited to 2.8V

37. ORDERING INFORMATION

The full ordering information is composed out of the

- Part number
- The package type and pin count for given part number (to be found in table EM6819 family on page 11)
- The delivery form (Stick, Tape, Tray) depending on the selected package

Examples:

- EM6819F6-B100-TP028BD
- EM6819F4-A000-LF020D

Part Number

Refer to table EM6819 family on page 11 for the different part numbers I.e EM6819F6-A000

Package Type and package pin count

Refer to table EM6819 family on page 11 for available packages for a given part number.

Packages: QFN, TSSOP, SO Pincounts: 8, 16, 20, 28, 32

Package and pincount codes:

QFN: LF032

LF020

TSSOP: TP028

TP020 TP016

SO: SO008

Delivery Form

The delivery form depends on the selected package type

For TSSOP, SO packages

- ST Stick
- BD Tape and Real

For QFN packages

- D Tray

Die/wafer form delivery

Delivery in die or wafer form is alos possible. Please contact EM Microelectronic directly if such delivery is requested.

EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not authorized for use as components in life support devices or systems.